

Nova geração de espumas para isolamento térmico com expansores não agressivos ao meio ambiente

➤ André Fernandes¹, Paulo Altoé ²

Dow Brasil

¹ Sistemas de Poliuretanos – Jundiaí – SP

² Poliuretanos – São Paulo – SP

Eliminação de HCFCs em Espumas Rígidas de Poliuretano

❖ Protocolo de Montreal – Acordo Histórico de 2007
 Define nova agenda e nova base para eliminação de HCFCs

- > Eliminação de HCFCs é antecipada
 - ➤ Eliminação total muda de 2040 para 2030
 - ➤ A redução é acelerada tendo inicio em 2015
- Necessidade de alternativa zero PDO com baixo GWP
 - Opções ficam ainda mais limitadas
 - Substituição HCFC 141b fica ainda mais desafiadora

Protocolo de Montreal 19^a Reunião – Novas bases do Acordo Histórico de 2007

Table 1. HCFC Consumption Controls Under the Montreal Protocol

Schedule (As a	al Protocol HCFC approved in the endment [1992])	New Montreal Protocol HCFC Schedul (As approved in the Montreal Adjustment from the 19th MOP)				
Control Date	HCFC Control Measure	Control Date	HCFC Control Measure			
	NON-ARTICLE	5(1) COUNTRIES				
Base level: 1989 HCFC consumption Base level: 1989 HCFC consumption +2.8% of 1989 CFC consumption +2.8% of 1989 CFC consumption						
1 January 1996	Freeze	1 January 1996	Freeze			
1 January 2004	35% reduction	1 January 2004	35% reduction			
1 January 2010	65% reduction	1 January 2010	75% reduction			
1 January 2015	90% reduction	1 January 2015	90% reduction			
1 January 2020	99.5% reduction	1 January 2020	99.5% reduction			
1 January 2030	100% reduction	1 January 2030	100% reduction			
	ARTICLE 5(1) COUNTRIES				
	vel: 2015 nsumption		e of 2009 and 2010 nsumption			
1 January 2016	Freeze	1 January 2013	Freeze			
		1 January 2015	10% reduction			
		1 January 2020	35% reduction			
		1 January 2025	67.5% reduction			
		1 January 2030	97.5% reduction			
1 January 2040	100% reduction	1 January 2040	100% reduction			

Original [Copenhague 1992]

2015 Linha Base

2016 Congelar Produção e Consumo

2040 Redução 100%

Acordo de 2007 [Montreal]

2010 Linha Base

2013 Congelar Produção e Consumo

2015 Redução 10%

2020 Redução 35%

2025 Redução 75%

2030 Redução 100%

Source: http://ec.europa.eu/environment/ozone/workshop_montreal.htm

Protocolo de Montreal 19^a Reunião – Novas bases do Acordo Histórico de 2007

Visão Gráfica da Redução de HCFCs

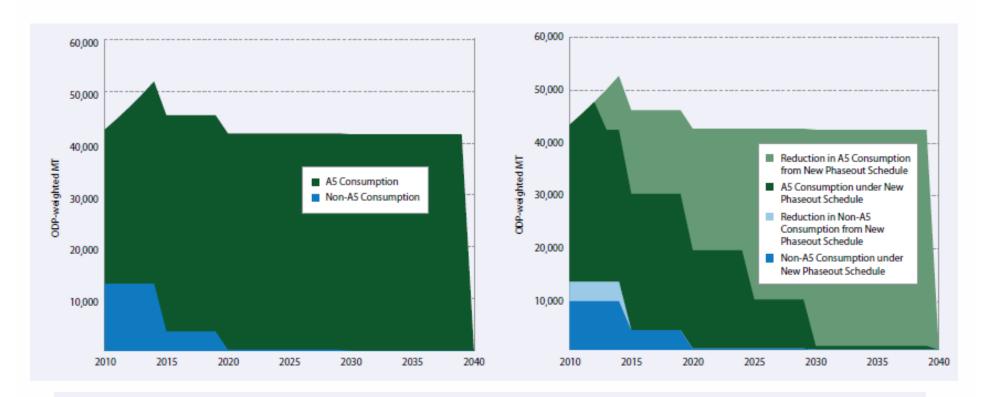
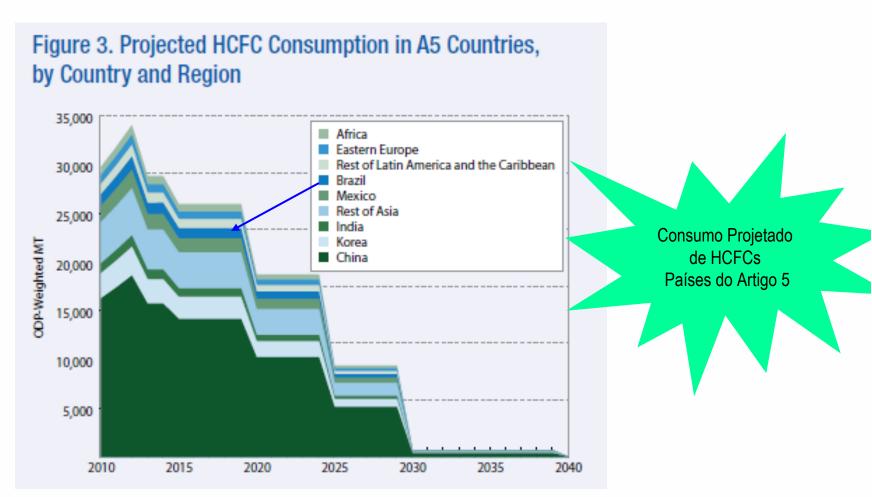



Figure 1. Projected HCFC Consumption in A5 and Non-A5 Countries, based on Montreal Protocol Phaseout Schedule from Copenhagen Amendments (1992)

Figure 2. Projected HCFC Consumption in A5 and Non-A5 Countries, based on Montreal Protocol Phaseout Schedule as Approved at the 19th Meeting of the Parties

Source: http://ec.europa.eu/environment/ozone/workshop_montreal.htm

Source: http://ec.europa.eu/environment/ozone/workshop_montreal.htm

Eliminação de HCFCs – Diagnóstico e Projeção do PBH

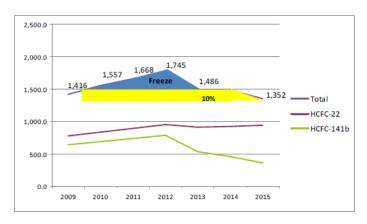
Consumo Brasileiro de HCFCs - 2009

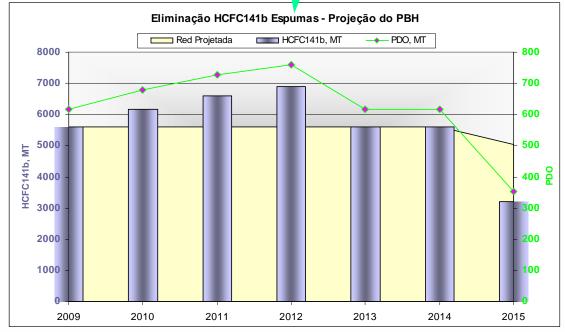
	t. SDO	% SDO	t. PDO	% PDO
HCFC-22	13,692,67	68,3	753,10	53,6
HCFC-141b	5.902,85	29,4	649,31	45,9
HCFC-142b	67,23	0,3	4,37	0,3
HCFC-123	9,99	0,05	0,20	0,0141
HCFC-124	385,72	1,9	8,48	0,6
HCFC-225	0,05	0,00025	0,0035	0,0
TOTAL	20058,51	100	1415,47	100

Consumo Brasileiro de HCFC-141b por Aplicação - Espumas

		Cons	umo de Emp	resas	Cons	umo de Emp	resas	Co	nsumo TOT	AL	
Setor	Aplicação	en	1a Convers	são	en	em 2a Conversão					
	•	Empresa	t. SDO	t. PDO	Empresa	t. SDO	t. PDO	Empresa	t. SDO	t. PDO	
	Ref, Domestica	1	541,57	59,57	1	1.287,78	141,70	2	1.829,35	201,27	
l	Paineis Continuos	0	0,00	0,00	4	366,91	40,36	4	366,91	40,36	
l	Paineis, outros	15	169,32	18,63	42	230,54	25,36	57	399,86	43,98	
l	Blocos	32	146,09	16,07	26	312,00	34,32	58	458,09	50,39	
l	Ref, Comercial	159	240,17	26,42	30	320,00	35,20	189	560,17	61,62	
PU	Transporte	45	130,00	14,30	19	245,70	27,03	64	375,70	41,33	
Rigido	Rev em Canos	3	13,90	1,53	3	101,21	11,13	6	115,11	12,66	
	Spray	5	29,08	3,20	2	87,50	9,63	7	116,58	12,82	
l	Aquecedores Sol.	18	112,30	12,35	10	57,60	6,34	28	169,90	18,69	
1	Estrutural	23	45,60	5,02	17	37,50	4,13	40	83,10	9,14	
	Empacotamento	4	31,00	3,41	1	14,80	1,63	5	45,80	5,04	
1	Thermoware	5	22,00	2,42	1	17,50	1,93	6	39,50	4,35	
	Flexivel, todas	43	120,55	13,26	16	180,45	19,85	59	301,00	33,11	
Pe	le Integral, todas	98	419,00	46,09	41	327,64	36,04	139	746,64	82,13	
	TOTAL	451	2.020,58	222,26	213	3,587,13	394,62	664	5,607,71	616,89	

Eliminação de HCFCs – Diagnóstico e Projeção do PBH




Simulação

- 3700 MT em 2015 Versus 2012

259 t. PDO: crescimento até 2013; 148 t. PDO: Redução 10% em 2015

407 t. PDO: total

Eliminação de HCFC141b em Espumas - Projeção do PBH									
	2009	2010	2011	2012	2013	2014	2015		
PDO, MT	617	679	727	760	617	617	353		
HCFC141b, MT	5608	6169	6606	6909	5608	5608	3209		
Reduçao, PDO									

Opções para Eliminação de HCFCs em Espumas Rigidas de Isolamento Térmico

Agentes de Expansão: Propriedades físicas e impacto ao meio ambiente

Como equacionar: Eficiência Energética Aspectos Legais, Meio Ambiente e Custos ?

Agentes de Expansão Flu	jentes de Expansão Fluorados											
	CFC-11	CFC-12	HCFC-22	HCFC-142b	HCFC-141b	HFC-134a	HFC-152a	HFC-245fa	HFC-365mfa-93	HFC-227ea		
									HFC-227ea-7			
Chemical Formula	CFCI3	CCI2F2	CHCIF2	CH3CCIF2	CCI2FCH3	CCI2FCF3	CHF2CH3	CF3CH2CHF2	CF3CH2CF2CH3	CF3CHFCF3		
									CF3CHFCF3			
Molecular Weight	137	121	86	100	117	102	56	134	148	170		
Boilling Point, C	24	-22	-41	-10	32	-27	-25	15.3	31	-16.5		
Gas Conductivity	7.4	10.5	9.9	8.4	8.8	12.4	14.3	12.5	10.8	11.6		
mW/mK at 10 C												
Flammable Limit in air, Vol	None	None	None	6.7-14.9	1.4-8.0	None	3.9-16.9	None	None	None		
TLV or OEL (USA), ppm	1000	1000	1000	1000	500	1000	1000	N/A	N/A	1000		
GWP (100yr)	4000	8500	1700	2000	630	1300	140	820	1140	2900		
ODP	1.0	1.0	0.055	0.055	0.11	0	0	0	0	0		
Source: TEAP Report, 2006))											

Agentes de Expansão não	Fluorados										
	Methylene	Trans-1,2-	Isopentane	Cyclo-pentane	n-pentane	Carbon	Isobutane	n-butane	Mehtyl Formate	Water	Methylal
	Chloride	dichloroethylene				Dioxide			Ecomate ®	CO2	
Chemical Formula	CH3Cl2	C2H2Cl2	CH3CH(CH3)CH2CH3	(CH2)5	CH3(CH2)3CH3	CO2	C4H10	C4H10	CH3(HCOO)	H20	CH ₃ OCH ₂ OCH ₃
Molecular Weight	84.9	97	72.1	70.1	72.1	44.0	58.1	58.1	60	18	76.1
Boilling Point, C	40	48	28	49.3	36	-139	-11.7	0.5	31.5	100	42.3
Gas Conductivity	N/A	N/A	13.0	11.0	14.0	14.5	15.9	13.6	10.7	14.5	14.2
mW/mK at 10 C											
Flammable Limit in air, Vol	None	6.7-18	1.4-7.6	1.4-8.0	1.4-8.0	None	1.8-8.4	1.8-8.5	5.0-23.0	None	2.2-19.9
TLV or OEL (USA), ppm	35 to 100	200	1000	600	610	N/A	800	800	100	None	1000
GWP (100yr)	NA	<25	<25	<25	<25	1	<25	<25	<25	1	NA
ODP	0	0	0	0	0	0	0	0	0	0	0
Source: TEAP Report, 2006	6	_			_			_			

Eliminação de HCFCs em Espumas Rígidas de Isolamento Térmico → Opções

HCFC 141b (PDO)

Potencial destruidor de ozônio

Opções Zero PDO

Água [CO2]
HFCs 134 365/227 ou 245fa [GWP ???]
Hidrocarbonetos [Pentanos]
Metilal
Formiato de Metila

Eliminação de HCFCs em Espumas Rígidas de Isolamento Térmico

> Aspectos Envolvendo PU Rígido

- > Meio Ambiente
 - Zero ODP e baixo GWP

- Isolamento térmico
- Densidade moldada
- Custo do sistema
- Processabilidade

- > Implementação e Investimentos
 - Inflamabilidade → Segurança
 - Equipamento Apropriado → Resistência a Sistemas corrosivos
 - Processamento → Maior controle temperatura moldes

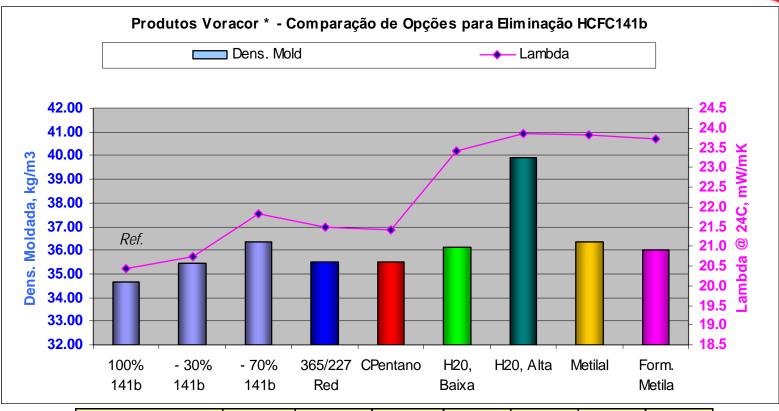
Eliminação de HCFCs em Espumas Rígidas de Isolamento Térmico

Dow

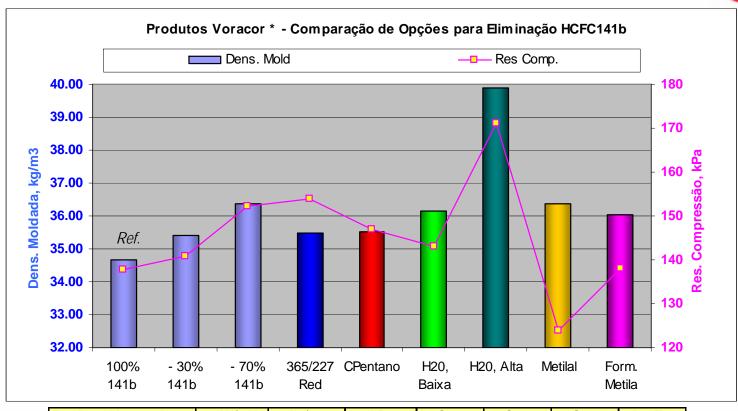
- ➤ Aplicações em Destaque
 - > Câmaras Expositoras
 - > Câmaras Frigoríficas
 - ➤ Máquinas de Gelo
 - "Máquinas de Venda"
 - Refrigeradores & Freezers

Eliminação de HCFCs em Espumas Rigidas de Isolamento Térmico

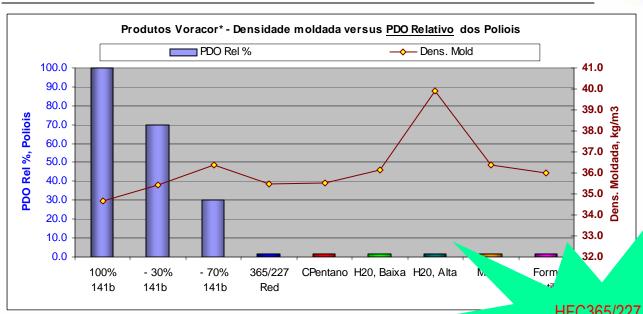
- ➤ Aplicações em Destaque
 - > Carretas, Containers
 - > Paines e Telhas
 - > Tanques
 - > Tubulações
 - > Spray

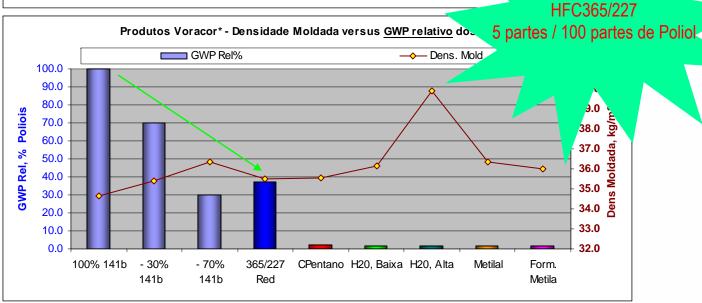


Comparação de espumas - Densidade vs lambda

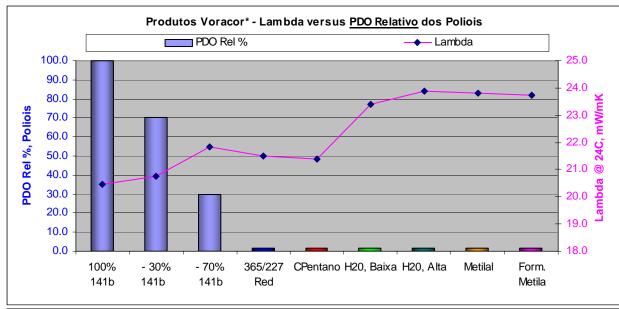


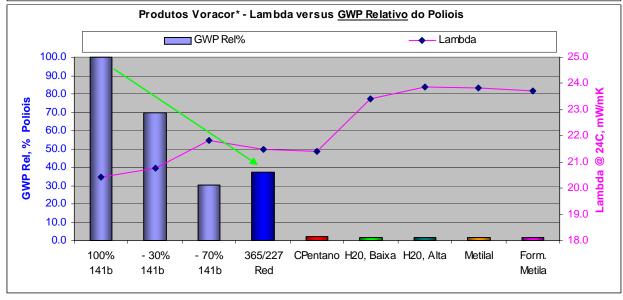
Produtos Voracor *	mW/mK	kg/m3	kPa	Seg.	Seg.	Seg.	Ag. Exp
	Lambda	Dens. Mold	Res Comp.	T.Creme	T.Gel	T.Pega	100PP
100% 141b Ref	20.44	34.65	138	5	42	78	23.9
- 30% 141b	20.75	35.42	141	4	39	75	16.7
- 70% 141b	21.83	36.36	152	5	37	71	7.2
365/227 Red	21.49	<i>35.48</i>	154	6	41	69	5.0
CPentano	21.40	35.53	147	6	42	70	13.0
H20, Baixa	23.41	36.15	143	6	41	71	3.9
H20, Alta	23.87	39.90	171	4	36	68	2.8
Metilal	23.82	36.37	124	6	43	71	8.0
Form. Metila	23.72	36.02	138	5	42	70	8.0


Comparação de espumas – Densidade vs resistência a compressão



Produtos Voracor *	mW/mK	kg/m3	kPa	Seg.	Seg.	Seg.	Ag. Exp
	Lambda	Dens. Mold	Res Comp.	T.Creme	T.Gel	T.Pega	100PP
100% 141b Ref	20.44	34.65	138	5	42	78	23.9
- 30% 141b	20.75	35.42	141	4	39	<i>7</i> 5	16.7
- 70% 141b	21.83	36.36	152	5	37	71	7.2
365/227 Red	21.49	35.48	154	6	41	69	5.0
CPentano	21.40	35.53	147	6	42	70	13.0
H20, Baixa	23.41	36.15	143	6	41	71	3.9
H20, Alta	23.87	39.90	171	4	36	68	2.8
Metilal	23.82	36.37	124	6	43	71	8.0
Form. Metila	23.72	36.02	138	5	42	70	8.0


Impacto ao meio ambiente das opções sem HCFC141b – Foco em densidade moldada



Impacto ao meio ambiente das opções sem HCFC141b – Foco em lambda

Resumo características - HCFC141b vs Agentes de expansão *inflamáveis*

Cpentano – Metilal – Formiato Metila

Resumo Espumas

HCFC 141b vs Agentes de Expansão Inflamáveis

C	P	e	'n	ta	n	0	
•		v		·	•••	•	

	100%	Ciclo	Metilal	For Espuma com memores profiedades
Características	141b	Pentano		Metil-
Agente expansão	Referência			Requer alto investimento

Pt Fulgor, Ag. Exp. Copo Fechado, C - 42 - 32 Pt Fulgor, Poliol Form, Copo Fechando, C < 1 <20 <30 ODP 0.11 0 0 0 GWP (100 a) < 25 630 < 25 NA

Densidade Moldada	~	~	~
Lambda	+	↓↓	++
Resistência Compressão	~	↓	~
Estabilidade Dimensional	~	↓	~
Custo Sistema, \$	~	\$	\$
Inflamabilidade	S	S	S
Corrosão	N	N	S
Investimento Equipamento Injeçao	SSS	\$\$	SS
Investimento Planta, Moldes	SSS	\$	\$

Legenda

~ Similar

† Melhor

↓ Pior

N Não

S Sim

^{*} Protegido Patente - Foam Supplies Inc USA

Considerações - Substituição de HCFC141b por

➤ Agentes de Expansão Inflamáveis → Cpentano – Metilal – Formiato Metila

Apresentam riscos na estocagem, transporte, manuseio e processabilidade por serem inflamáveis!

Produtos Voracor* → Zero ODP, zero GWP

- Requerem investimentos em máquinas e modificações em plantas devido inflamabilidade (\$)
- CPentano

Menor densidade moldada

Espuma com o melhor compromisso de propriedades dentre os agentes de expansão inflamáveis

Metilal

Estabilidade dimensional inferior

Lambda similar ao das espumas expandidas com água

Formiato de Metila

Densidade moldada similar a HCFC141b

Lambda similar ao das espumas expandidas com água

Tendência a apresentar corrosão em equipamentos de injeção

Resumo características - HCFC141b vs Agentes de expansão *não inflamáveis*

HFC 365/227 – H2O Baixa - H2O Alta

Resumo Espumas HCFC 141b vs Agentes de Expansão não Inflamáveis

	100%	- 70%	365/227	H20	H20
Características	141b	141b	Red	Baixa	Alta
Agente expansão	Referência				
Ponto de Fulgor, Copo Fechado, C	1	1	1	1	1
	1	1	1	1	1
ODP	0.11	0.11	0	0	0
GWP (100 a)	630	630	@1140	0	0

Densidade Moldada	~	~	+	+ +
Lambda	+	~	1.1	↓ ↓
Resistência Compressão	~	†	~ `	~
Estabilidade Dimensional	~	~	~	+
Custo Sistema, \$	~	\$	~	~
Inflamabilidade	N	N	N	N
Corrosão	N	S	S	S
Investimento Equipamento Injeção	1	\$	\$	1
Investimento Planta - Moldes	1	1	\$	\$\$

Consderações – Substituição de HCFC141b por

Agentes de Expansão não Inflamáveis → HFC 365/227 - H2O Baixa - H2O Alta

Produtos Voracor * → HFC 365/227 - H2O Baixa - H2O Alta - Zero ODP, baixo ou Zero GWP

- Baixo ou nenhum investimento em máquinas e adequação de plantas
- HFC 365/227

Custo de formulação maior que HCFC141b

Baixa densidade

Melhor compromisso de propriedades dentre os agentes de expansão não inflamáveis

Tendem a apresentar corrosão em máquinas

Sistemas possuem baixo GWP e não Zero GWP

Recomendado para todas as aplicações e especialmente spray

➤ H2O Baixa e H2O Alta

Densidade bem superior a HCFC141b

Lambda típico de sistemas expandidos com água

Requerem maior controle de temperatura de moldes

Recomendado para todas as aplicações, especialmente as com retardância a chama e spray

Conclusão

- Não existe opção ideal para a eliminação do HCFC141b em espumas rígidas de isolamento térmico.
- A eliminação do HCFC141b, com qualquer dos agentes de expansão disponíveis, resultará em algum aspecto desfavorável a ser equacionado:
 Custo do sistema, do equipamento, investimento em plantas, eficiência energética ou impacto para o meio ambiente.
- A eliminação do HCFC deveria partir de exigências técnicas da espuma, focadas em volume de produção e compatíves com o aporte de investimentos disponível.
- A Dow está preparada para discutir todas as opções e propor soluções que atendam necessidades técnicas e econômicas caso a caso.
 Inclusive em projetos com incentivo do Fundo Mutilateral do Banco Mundial e PNUD
- A Dow está comprometida em participar ativamente do PBH (Programa Brasileiro de Eliminação de HCFCs) e em concordância com o Protocolo de Montreal contribuir para a proteção do meio ambiente e a sustentabilidade.

Muito obrigado!

Paulo Altoé paltoe@dow.com +55-11-51889140

+55-11-99716995

André Fernandes <u>alfernandes@dow.com</u>

+55-11-45897913

+55-11-99820036