

Innovative bio-based resins for the polyurethane and composite industries

Andrea Minigher - Biophenolika Ltda

Who we are

Biophenolika Ltda:

- □ is a Brazilian company based in Fortaleza (Ceara)
- exploits the original and patented know-how

developed in Italy and USA

of the EXAPHEN[™] products line

EXAPHEN product line

- high-performance resins and pre-polymers for the PU, epoxy and composite markets
- obtained from natural agro-wastes
- using only non-edible sources from agriculture or food industry

Bio-based raw materials

A green equation:

EXAPHEN products available

Two families of products are available on the market:

Polycard XFN

polyols for the poluyurethane market

Novocard XFN

novolacs for the polyurethane, epoxy and composites markets

Polycard XFN: bio-based polyols

Applications

Polycard XFN polyols are profitably used in the PU industry.

- Rigid polyurethane foams for thermal insulation (buildings, trucks, appliances, etc.) is the main application of Polycard XFN polyols
- Uses for other PU applications (microcellular, binders, etc.) are also possible
- Use in PUR flexible foams is in the testing phase

Rigid PUR

In rigid PUR, Polycard XFN polyols have been already used:

- for all insulating applications (panels for buildings, air conditioning, refrigerated trucks, appliances, district heating pipes, etc.)
- with all the available technologies (spraying, continuous slabstock production, discontinuous moulding)
- **easily adapting** reactivity and viscosity to the specific technologies
- □replacing **from 20 to 100%** of the traditional petrol-derived polyols

Properties

- Complete range of products (different viscosity,OH value, etc.)
- High compatibility with other components
- Self-catalytic polyols available
- Bio-based content from 73%
- Improved fire resistance properties in comparison to other bio-based polyols

Properties

Physical-chemical Properties	POLYCARD XFN 50	POLYCARD XFN 100	POLYCARD XFN 150	POLYCARD XFN 500	
Color (1)	4 – 5				
Hydroxyl Equivalent Weight (g/mole)	307	~400	~104	~211	
Hydroxyl Value (mg KOH/g)	190	140	540	266	
Functionality	4-5	2(diol)	3 (mannich)	6	
Viscosity 25°C (cps)	1,500-2,000	850 - 1,000	4,000 - 8,000	1,550 - 1,650	
Density (g/mL)	0.95	0.99	1.04	1.04	
Water content (%)	≤0.5				
Bio-Content (2) (%)	95	90	73	85	
Global Warming Potential ⁽³⁾ (kg CO ₂ /kg)	- 5.91	- 4.46	- 5.21	- 3.54	

Ex.1: R-PUR panels production

Continuous production of PUR panels.

Up to 100% Polycard XFN-50 used.

PUR panels used for the thermal insulation of air conditioning channels (80% Polycard XFN-50 + 20% Polycard XFN-150).

Ex.2: R-PUR insulated pipes

PUR-insulated pipes for district heating and cooling, produced in collaboration with VEM Spa (Italy), using 40% of Polycard XFN-150

<u>Video</u>

Novocard XFN: bio-based Novolacs

Applications

Novocard XFN products can be used:

- □ As **polyols**, for rigid PUR systems
- As hardeners of epoxy resins

and composites

Applications

Uses of **epoxies** and **composites**:

- Flooring
- Automotive
- Marine
- Wind turbines
- Aerospace
- ...and many others

Properties

- Liquid at room temperature
- Wide range of molecular weight, viscosities
 and OH values
- Toughening of the epoxy resin
- Good chemical resistance
- Very high bio-based content 95%

Properties

Physical-chemical Properties	Novocard XFN 1050	Novocard XFN 1300	Novocard XFN 1400
Color (1)	4-5		
Hydroxyl Equivalent Weight (g/mol)	295-367		
Hydroxyl Value (mg KOH/g)	190	153	160
Viscosity 25°C (cps)	900 - 1500	25000 - 35000	36000 - 45000
Density (g/mL)	0.95	0.98	0.99
Water content (%)	≤0.5		
Bio-Content (2) (%)	95±3		

Ex.1: Natural fibres reinforced pipe

- 30/70% Novocard XFN-1050/epoxy
- Pipe reinforced with jute fibers
- very good adhesion and compatibility between resin and natural fibers
- Toughening effect of the novolac on the epoxy matrix

Ex.2: Epoxy pre-pregs

- Epoxy + carbon fibers
- Pre-impregnation of fibers by hot-melt process
- □ Fiber content: 49%

Ex.2: Epoxy pre-pregs

- high-quality16-sheets laminate produced by press-claving
- Thermal and tensile properties maintaned
- IZOD impact strenght of the resin increased by 163%

Ex.3: Press moulding

Helmet for U.S. firefighter produced with 30% Novocard XFN 1300.

Roof laminate produced in India, reinforced with bamboo fibers.

Bio-based resins: why?

The Ecological Footprint

A real sustainable development needs products with lighter ecological footprint.

Bio-based content

Bio-based content of EXAPHEN products measured according to ASTM D6866-08 standard.

Polycard XFN

Novocard XFN

Life Cycle Assessment

Cradle-to-gate approach, following ISO 14040 Series Standards.

Complete range of parameters considered:

- GWP, Global Warming Potential
- Eutrophication
- Fossil Fuel Depletion
- Smog Generation
- Ecological Toxicity

Life Cycle Assessment

The lower the area, the lower the environmental impact

Polycard XFN-100

Novocard XFN-1050

Green areas = EXAPHEN products

Life Cycle Assessment

The lower the GWP, the lighter the Ecological Footprint

Polyol	GWP (kg CO ₂)	
Petrol polyol	4,10	
Soy polyol	- 1,40	
Polycard XFN-100	- 5,91	
Polycard XFN-150	- 5,21	

If we substitute 1 Mton of petrol polyol with Polycard XFN-100, we save 5,91 Mton of CO₂, equivalent to:

- □ the emission of 1 person flying from Brazil to Italy and back
- the emission of 30.000 km driving by car

Developmental products

Our R&D team is working to develop new resins from many natural sources:

- epoxy-novolacs
- benzoxazines
- amino-alcohols
- UV-curable acrylates
- ...and many other derivatives.

Thank you for your attention

info@biophenolika.com.br

website available soon!