Fortron® PPS for Thermoplastic Composites

November 2012
Contents

- Introduction to Ticona
- Fortron® PPS
 - Chemistry
 - Properties
 - Applications
- Fortron® PPS Composites
 - Background
 - Processing Options
 - Properties
 - Applications
- Summary
Broad Portfolio of Engineering and High-Performance Polymers

Price for performance

High-Performance Polymers (HPP) (TI¹ > 150 °C)

Engineering Polymers (ETP) (TI¹ > 90 °C)

Amorphous

Partially crystalline

TI¹ = Temperature Index

Ticona Engineering Polymers

- LCP – Vectra®/Zenite®
- PPS – Fortron®
- PCT – Thermx®
- PET – Impet®
- PBT – Celanex®
- PBT Alloy – Vandar®
- TPC-ET – Riteflex®
- POM – Hostaform®
- LFRT – Celstran®, Factor®, Compel®
- CFR-TP – Celstran®
- UHMW-PE – GUR®
Fortron® PPS
Summary – Structure and Properties

- **Semicrystalline**
 - T_g 85°C, T_M 285°C
 - Density 1.35 g/cm3

- **Inherently Flame Retardant:**
 - UL94-V0, LOI > 45

- **Chemical Resistance – Dimensional Stability**
 - Fuels, oils, solvents
 - Water-glycol

- **Easy to Process**
 - Injection molding
 - Extrusion

Polyphenylenesulfide (PPS)
Poly(thio – 1,4 - phenylene)
Fortron® PPS

Semi-crystalline thermoplastic polymer, perfectly suited for parts that have to withstand the high mechanical and thermal requirements which require…

- A high melting point range between 280° and 290°C
- Inherently flame resistant
- Excellent resistance to chemicals, oils and fluids
- An ideal alternative to conventional materials such as thermosetting polymers and metals
- High hardness and stiffness and superb long-term creep under load properties
- Ease to injection mold, blow mold and machine
- Weight reduction combined with high dimensional stability
Fortron® PPS Has No Known Solvent Below 200°C

- Chemical resistance with minimal attack or swelling even at elevated temperatures
 - Resists: acids/bases pH 2 to 12
 - Resists: strong bleaches
 - Resists: auto fluids – coolants, transmission & brake
 - Resists: gas & alternate fuels (methanol, ethanol)
 - Resists: hydrolysis
Fortron® PPS 0214C1 – Matrix Material for Composites

- Linear, unmodified PPS polymer
- High molecular weight / high viscosity: 140 pa·s
 - For extrusion and injection molding applications
- Specified for aircraft applications
 - In use at Airbus and Boeing
 - VIAM qualification
 - Federal state unitary enterprise “All Russian Scientific Research Institute of Aviation Materials”
- Tested in regards to flammability, smoke density and smoke toxicity:
 - ABD0031
 - FAR/JAR 25.853
 - New: DIN 5510 and ISO 5659
Fortron® PPS 0214C1 – Smoke Density Tested with 2 mm Plaques

- Smoke density according to Airbus Standard ABD0031
 - Non-flaming – Max. Value: 0, Average: 0
 - DS max. @ 4 min: 0; ABD and FAR Passed
 - Flaming – Max. Value: 32 (6 min.), Average: 23 (6 min)
 - DS max. @ 4 min: 15; ABD and FAR Passed

- Tox-Test (ABD0031):
 ABD / FAR passed

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Max. Value in ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Cyanide HCN:</td>
<td>NF: 0 – F: 0</td>
<td>150</td>
</tr>
<tr>
<td>Carbon Monoxide CO:</td>
<td>NF: 0 – F: 10</td>
<td>1000</td>
</tr>
<tr>
<td>Nitrous Gases NO-NO₂:</td>
<td>NF: 0 – F: 0</td>
<td>100</td>
</tr>
<tr>
<td>Sulfur Dioxide/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hy. Sulfide SO₂ - H₂S:</td>
<td>NF: 0 – F: 10</td>
<td>100</td>
</tr>
<tr>
<td>Hydrofluoric Acid HF:</td>
<td>NF: 0 – F: 0</td>
<td>100</td>
</tr>
<tr>
<td>Hydrochloric Acid HCl:</td>
<td>NF: 0 – F: 0</td>
<td>150</td>
</tr>
</tbody>
</table>
Fortron® PPS 0214C1 – Flammability Tested With 2 mm Plaque

- **Vertical Burning Test 12 s ABD0031**
 - Total burn time: 12 s
 - Flame extinguish time: 0 s
 - No. of particles: 0
 - Ignited particles: 0
 - Total burn length: 5 mm

- **Vertical Burning Test 60 s ABD0031**
 - Total burn time: 60 s
 - Flame extinguish time: 0.6 s
 - No. of particles: 2.4
 - Ignited particles: 1.4
 - Total burn length: 44 mm
Internal UL Flammability Testing

<table>
<thead>
<tr>
<th>Material</th>
<th>Part Thickness</th>
<th>Unaged Sample Rating</th>
<th>Aged Sample Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfilled Fortron PPS</td>
<td>3.0mm (0.12”)</td>
<td>V-0*</td>
<td>V-0*</td>
</tr>
<tr>
<td>Control</td>
<td>1/32”</td>
<td>V-0</td>
<td>V-2</td>
</tr>
<tr>
<td></td>
<td>1/64”</td>
<td>V-2</td>
<td>V-2</td>
</tr>
<tr>
<td>Unfilled PEEK</td>
<td>3.0mm (0.12”)</td>
<td>V-0*</td>
<td>V-0*</td>
</tr>
<tr>
<td>Control</td>
<td>1.5mm (0.059”)</td>
<td>V-0*</td>
<td>V-0*</td>
</tr>
<tr>
<td></td>
<td>1/32”</td>
<td>No V-Rating</td>
<td>V-2</td>
</tr>
<tr>
<td></td>
<td>1/64”</td>
<td>No V-Rating</td>
<td>No V-Rating</td>
</tr>
</tbody>
</table>

- Thin PEEK samples failed to achieve a V-Rating because of long burn times and cotton ignition.
- Thin PPS parts have V-0 equivalent burn times but molten polymer drips can ignite the cotton = V-2 Rating

Data as reported by Underwriters Laboratory
Fortron® PPS Dimensional Stability

- Extremely low moisture absorption – 0.02%
- Minimal effect of temperature
- CLTE – $19 \times 10^{-6} /°C$ (6165A4)
- Precision molding
- Low shrinkage - 0.3% (6165A4)
- Creep resistance

For Precision Parts Even at Elevated Temperatures
Low PPS Water Absorption Results in Dimensional Stability

![Bar chart showing water absorption rates for PPS, PEI, and PEEK]
Top Fortron® PPS Segments

- Semicon
- Industrial
- EE & Sensors
- Fibers
- Automotive
- Composites
Fortron® PPS
Extrusion: Film, Fiber, Netting, etc.

- Aircraft Composite
- High Tenacity Monofilament
- Filter Netting
- Stock Shapes
- CPI Filter
Fortron® PPS for Thermoplastic Composites

May 2012
Why Thermoplastic PPS Composites vs. Thermoset Composites?

Improved Properties
- Tougher, good fatigue performance
 - 4x tougher than toughened epoxies
- Damage tolerant
- Insensitive to moisture
- High-temperature performance
- Very low flammability, smoke, toxicity
- Low residual stress in molded parts
- Excellent chemical resistance

Improved Processing
- Eliminate bagging materials and labor
 - May also eliminate kitting and debulking steps and equipment
- Eliminate autoclave possible
 - Cost, space and bottleneck issues
- Rapid processing vs. thermosets
- Can be reformed
- Simple, longer lasting tool
- Fusion bonding eliminates fasteners and adhesives
 - Reduces cost and weight

Green processing
- Recyclable
- No VOCs in processing
- Less process scrap
- Fewer process energy requirements
Thermoplastic Composite Matrix Cost Advantage

- The material cost for a thermoplastic matrix might be equal or even higher.
- Lower cost for handling, processing, and assembly can lead to a substantial advantage in total cost.

Even the High Cost Thermoplastic Polymers Offer Improved Cost Savings vs. Epoxy Based Composites
Example for Value Chain in Aircraft Industries

- Plastic Pellets
- Film Producer
- Producer of Composites
- Thermo-Forming-Process
- Assembling
- Aircraft
Station 1: Film Production

Starting Product:

PPS Pellets
- Temperature stability
- High level of hardness and impact strength
- Excellent resistance to chemicals
- Broad temperature range
- Inherent flame resistance

Film Production

Station 1 – Lipp-Terler GmbH in Gaflenz near Linz, Austria. The pellets are converted into films with a thickness of 50 to 200 µm. The film leaves the special plant in rolls of 100 kg in a flawless state, crystal clear and with the required characteristics with regard to strength and dimensional stability.
Station 2: Composite Production

Starting Product:
Basic Matrix of PPS / Carbon Fiber Fabric

Laminate Production
Station 2 – Ten Cate Advanced Composites BV, Nijverdal, Netherlands. The carbon fiber fabric and PPS film are bonded together in a press, under high pressure and high temperature, into high-strength, dimensionally stable and resistant composites in the desired layer thickness.

Fortron PPS Film

e. g. Carbon Fiber

© Ticona PPS-014R1 5/12 US EN
Station 3: Thermoforming

Starting Product:
Composite plates in the required size

Shaping
Station 3 – Fokker Special Products, Hoogeveen, Netherlands.
The composite plates are pre-heated and subsequently shaped into the desired form under pressure and high temperature.
Station 4: Assembly

Starting Product:

Front wing portion
(Weight of the parts is 20 percent less than aluminum)

Assembly
Station 4 – Airbus
The completed construction element is mounted at the intended location.
Technology Breakthrough: Fixed Wing Leading Edge Airbus

- Welded structure
- Low weight and low cost monolithic design
Fortron® PPS
Success in the Aviation Industry

- Safe, efficient, environmentally friendly
- Modern design
- Licensed for aircraft construction
- New applications from Fortron® PPS
Reduced Process Energy Example for TP vs TS Composites

Thermosets
- Assemble part in tool
- Match Mold Process Cycle (1+ hours)
- Cool, removal

Thermoplastics
- Assemble part in tool
- Stamp /Thermoform Cycle (minutes)
- Subsequent part can be stamped immediately

Energy Required Per Part can be less than a factor of 10 for TP vs TS with Match Metal Molding of Simple Parts

Additional Savings:
- No Need for Prepreg Freezers
- Reduced Facility HVAC Costs
Reduced VOC’s and Toxic Products

Thermosets
- Prepregs usually Contain Solvents (VOC’s) for Tackiness
- Cure By-Products can be Complex Organic Compounds
- Halogenated Additives Are Typically Used to Reduce Flammability
 - But Toxicity is Increased

Thermoplastics
- Prepregs Do Not Contain Solvents
- No Cure By-Products
- No Halogenation Necessary for Most High Performance Thermoplastics
 - Excellent FST Performance
T300 3K Carbon Fabric/Fortron® PPS Composite Property Data*

- Values are in ksi
- Warp direction data
- Average values - Tested per Mil-R-17

Steady and Stable Across Use Temperature

* TenCate CETEX Data
T300 3K Carbon Fabric/
Fortron® PPS Composite Property Data*

- Values are in msi
- Warp direction data
- Average values - Tested per Mil-R-17

Steady and Stable Across Use Temperature

* TenCate CETEX Data
© Ticona PPS-014R1 5/12 US EN
Working Together in the Aviation Industry
Technology Validation – Carbon/PPS: Fokker 50 Undercarriage Door

- Final step in a dedicated 10-year program
- Press-formed ribs and spars
- Welded assembly
- Qualified carbon / PPS material
- Certified by the Airworthiness Authorities
- Flown on a KLM aircraft for 3.5 years
Technology Breakthrough: Fixed Wing Leading Edge Airbus A340-500/600

- Welded structure
- Low weight and low cost monolithic design
- Strong partnering with Airbus UK and TenCate
- Technology is now state of the art
 - current application Airbus A380
Metal Substitution with Linear PPS Composite Resulted in 20–50% Lighter Components

Keel Beam Application

- Multi-technology concept
 - Panels and spars
- Thermoset Prepreg lay-up
 - TP ribs and angles
 - Aluminum and titanium brackets

KB WP: 18m, 2.5 tons
Main Ribs (L&R)
A330/340 Family: Common Aileron

A318
A319
A320
A321
A330-200
A330-300
A340-300
A340-500
A340-600
A380-800

240 Parts per Airframe
Airbus A340 500/600 Aileron
Thermoplastic Composite Parts

Edge Ribs

Main Ribs

Leading Edge Ribs, Angles & Panels
Airbus A340 500/600
Thermoplastic Composite Components

Part Description: Panel of the Pylon Forward Second Structure - 22 per Aircraft

Dimensions:
- L = 700 – 1400 mm
- W = 200 – 400 mm
- Thickness 2.8 mm
- Double-Curvature Shape

Material:
- PPS / Carbon Fiber
- Bronze Mesh Top-layer for EMI Shielding
Leading Edge Airbus A380

- 8 assemblies / wing
- Wing length: 26 meters
- 16 segments, 52-meter length
- 400 kg total weight
Weight Reduction – The Vision

Fortron® PPS in Aircraft Interior

46% Lighter Seat Parts Due to Metal Substitution

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>280 g</td>
</tr>
<tr>
<td>Fortron</td>
<td>150 g</td>
</tr>
</tbody>
</table>

Product innovations for Composites
Weight Reduction – The Vision
Linear PPS for Aircraft Interiors

- Fortron® PPS is the prime candidate for several aircraft interior efforts
- Applications include seat frames, brackets, beams, ducts
- Lower cost vs. PEI and PEKK
240 CETEX® Parts in Ailerons

Common Aileron for A330-340 Family
Summary

- Fortron® PPS is a demonstrated, producible, low-cost, high-performance thermoplastic for composite applications
 - Aircraft interior and exterior applications
 - Down hole applications
 - Corrosion resistant environments
 - High-temperature usage
 - The low-cost, green alternative

- Industrial thermoplastics composites manufacturing is a demonstrated production process
 - Proven success in aerospace

- Ticona technical personnel will work with you to meet your composites needs
Fortron® PPS
for Thermoplastic Composites

For more information on Ticona Performance Driven Solutions.™
www.ticona.com/composites

Bruno Balico dos Santos
Application and Development Engineer
Office: +55 11 3147 3372
Mobile: +55 11 98573-0763
Email: bruno.santos@ticona.com.br
Information is current as of November 2012 and is subject to change without notice.

The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products.

Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use.

Any existing intellectual property rights must be observed.

© 2012 Ticona. Except as otherwise noted, trademarks are owned by Ticona or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.