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!   To reduce CO2 emissions (environmental awareness and 

regulation) 
!   Weight-to-power ratio with power limited due to emission regulation 

!   To cut fuel consumption (selling argument) 
 

!   To increase autonomy 
 Electrification of vehicle results  
 in additional weight (battery) 
 between 250 kg to 350 kg  

       (BMW’s MCV, JEC Composites Magazine No 61) 

 
è New concept in vehicle architecture and new production processes 

 

Lightweight automotive design 
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Composites in Automotive Industry 
Statement 

!  Reduce weight using composites material 
!   Carbon fibers is about 50% lighter than Steel and 30% lighter than 

Aluminum 
!   Composites are already widely used in automotive industry for non 

structural components 

!   Industrial wants to extend the use of composites to structural 
components; Mechanical requirements can only be reached with 
continuous fiber composites 
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Renault Espace composites 
Started in 1984 

Up to 400 vehicles/day 

Non structural components 
Mostly Short fibers – SMC process  



!  However… 
!   Missing know-how and experience on continuous fiber composites 

design and manufacturing for automotive applications 
!   Technology transfer from Aeronautics but industry constraints are 

different! 
 

!    Specific automotive constraints: 
!   Production time cycle 
!   Process automation 
!   Cost of finished part 
!   Performances (Crash, Safety…) 
!   Recycleability (european regulation ex:REACH) 

Composites in Automotive Industry 
Automotive structural components 
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! Collaborative program “defi composites”, 
LC4 project 

    “Low cost Carbon fiber chassis, adapted to    
automotive production time cycle and 
safety requirements” 

 
 
Target (First prototype End 2011):  
- integration of safety standard of constructors 
- 1000 chassis/day 
- Less than 1000 Euros/chassis 

! BMW backrest in the M3 CSL  

 6 dies in 2005 with expensive try-outs 
because of material cost, manufacturing 
processes 

 
 2011 target: 2 dies maximum! 

 

Composites in Automotive Industry 
Automotive structural components / Supporting examples 
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!  Current practices lay on expensive trials 

Composites in Automotive Industry 
Automotive structural components / pain point 
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RTM B-Pillar: 
~ 100kEuros / Die 
~ 300 Euros in material per test 



7 7 

Limited interactions so far 
between Performance  

and Manufacturing 
 teams 

Integrated 
teams 

STANDARD STEEL HLE / ALUMINUM COMPOSITES 
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Delamination 
Ply failure 
Stiffness 
Strength 

Fragmentation 
Crushing 

 
Fiber orientations 
Porosity 
Stiffness 
Strength 
Distorsion Thicknesses 

Plastic Strain 
Welding phase 
Kinematic hardening 
Distorsion 
 

Buckling 
Fracture 
Spotweld rupture 

Stamping 
/Welding 

Stamping / Hotforming 
SPF / Rolling / 

Extrusion / Welding architecture 

Sequence  of plies Sizing of plies 

Tape or yarn lay-up 
Infusion / injection 

Forming / Thermoforming 
 

Stronger interactions 
between teams 

Thicknesses 
Plastic Strain 
Welding phase 

Crash 
Stiffness 
Strength 
NVH 
Durability 
Internal Acoustics 



Agenda of the technical 
presentations 

!  Manufacturing (10:30-12:30) 

!  Assembly (14:00-15:00) 

!  Physics of materials (15:00-16:00) 

!  Performances (16:00-17:00) 
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 Composites Manufacturing Simulation for 

“As Built” Structural Analysis  
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Composites in Automotive Industry 
Automotive structural components: Material/Manufacturing 
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AUTOMOTIVE COMPOSITES 
STRUCTURAL COMPONENTS 
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Design flexibility / production rate 
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Reinforced 
Thermoplastics 

Mechanical 
Properties 

/ 
Material  

costs 

Reinforced 
Thermosets 

Long fibers Short fibers 
unreinforced 

2 mm 

Injection molding Thermocompression Press Forming 

RTM / Infusion - Vacuum Forming 

Fiber length 

Composites materials and processes 

BMC          SMC 

6 mm 20 mm 

Mats (GMT) Textile 

Unidirectional 



12 

Short Fiber Injection (1/2) 

Design flexibility / production rate 
 

Long fibers Short fibers 
unreinforced 

2 mm 

Fiber length 

Mats (GMT) Textile 

Unidirectional Mechanical 
Properties 

/ 
Material  

costs 



Short Fibers Injection (2/2) 

Courtesy of TRW Automotive Safety Systems GmbH and DSM 

!   Driver Airbag container: 
Polyamide matrix / Glass 
fiber-30% mass fraction 

 
!   Modeling: 

!  Injection analysis to get fiber 
orientations 

!  Identification of 
ElastoViscoPlastic Material 
model with DIGIMAT material 
model 

!  VPS failure analysis using 
Digimat model 
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LFT: Long Fiber Thermoplastic (1/2) 

• From 8 metallic parts to 1 plastic part 

• LFT decrease weight & cost 

Design flexibility / production rate 
 

Long fibers Short fibers 
unreinforced Fiber length 

Mats (GMT) Textile 

Unidirectional Mechanical 
Properties 

/ 
Material  

costs 



! Fluid flow with fibers transport 
! will give final stiffness & strength 

! Modeling 
!   TP modeled with SPH (meshless method) 
! Fiber modeled with beam elements 
! Fiber interactions handled through contact 

algorithms 

! Phenomenae not well known ! 
!   ESI Ready to engage a cooperative 

investigations 
Fiber 

Damage 

Velocity 
Contour 

LFT: Long Fiber Thermoplastic (2/2) 
Fiber orientations and damage 
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Thermoforming (1/7) 

Design flexibility / production rate 
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!  PAM-FORM can evaluate: 
!   Different forming strategies: 

!  Stamping, diaphragm (single or double) forming, thermoforming 
!  Clamping conditions, process parameters (tool velocity, 

temperature, pressure…) 
 

!  Through the prediction of: 
!   Wrinkling 
!   Bridging 
!   Thickness 
!   Optimum flat pattern 
!   Contact pressure 
!   Fiber orientation 
!   Stresses and strains 
 

Thermoforming  
simulation using PAM-FORM (2/7) 
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Courtesy:  LKT Erlangen-Nürenberg 



Ex1: Wrinkling prediction / 
forming (3/7) 
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!   UD thermoforming / 20 plies / APC2-AS4 (thermoplastic matrix, 
carbon unidirectional reinforcement) / Quasi-Isotropic lay-up 

  

Courtesy: Dassault Aviation 

PAM-FORM2G simulation 
Top and Bottom ply (End view) 

Marketing.composites@esi-group.com 

Top View 

Bottom 
View 

Wrinkle 

Smooth  
surface 



 
Ex2: Bridging risk prediction (4/7) 
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Courtesy: Delft University of Technology 
Marketing.composites@esi-group.com 

!   Fabric / 6 plies / PPS Matrix 

  

PAM-FORM2G simulation 
Highlights on bridging risks 



 
Ex3: Prediction of laminate thickness 

and thickness per ply (5/7) 
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Courtesy: Airbus UK 

480 X=0 X=480 

Top section 

Bottom section 

Laminate thickness 
Ultrasonic measurement versus simulation 

Complex clamping conditions  
determined with PAM-FORM2G 

Thickness per ply  
determined  with PAM-FORM2G 

Marketing.composites@esi-group.com 

!   Wing box: UD and Fabrics / 8 plies 

  



Ex4: Flat pattern optimization (6/7) 
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Courtesy: Airbus UK 

Optimization of flat pattern 
with PAM-FORM2G 

Marketing.composites@esi-group.com 

!   J-RIB: 4 plies / thermoforming 

  

Initial flat  
pattern 

Optimized flat  
pattern 

Poor part 
quality Improved part 

quality 

Simulation setup 

Lower tool 

Upper tool 

4 plies 



Ex5: Integrated shape and tooling 
optimization (7/7) 
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Marketing.composites@esi-group.com 



23 

Liquid Composites Molding (LCM) 
RTM / Infusion (1/13) 

Design flexibility / production rate 
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Fiber length 

Mats (GMT) Textile 

Unidirectional Mechanical 
Properties 

/ 
Material  

costs 



!  PAM-RTM can evaluate and optimize 
!   Injection strategy (RTM, VACUUM INFUSION, VARTM…)  
!   Injection pressure and flow rate 
!   Injection gates, vents and vacuum ports location 
!   Molding temperature 
!   Flow media 

!  Through the prediction of 
!   Dry spots 
!   Filling and curing times 
!   Flow front velocity / Fiber washing 
!   Pressure in the mold 

!  Taking into account 
!   Fiber angle variation (permeability variation) of the preform 

Liquid Composites Molding Simulation 
(2/13) 

24 Marketing.composites@esi-group.com 



Ex1: Resin flow front analysis 
(3/13) 
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!   NCF floor pan injection 

Filling: 40 % 

Floor pan 
 injection 

TECABS: RENAULT – Mines Douai 



 
Ex2: Degree of filling, filling and  

curing time prediction (4/13)  
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Courtesy: EADS Innovation work, 

Filling time 

Marketing.composites@esi-group.com 



!   Inner liner for hull reinforcement 
!  Very complex part including high shapes (1.2m) 
!  Injection analysis allows determination of injection 

strategy (injection points/channels and vents 
location as well as open/closing sequence) to 
minimize: 

!  Dry spots 
!  Filling and curing times 
!  Fiber washing 
!  Pressure in the mold 
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BUT, Infusion process tuning might be difficult => Infusion simulation 

Courtesy: PPE & Azimut 

Percentage of filling at each stage of the infusion 
Computed with PAM-RTM 

Initial injection points 

Secondary injection points/channels 

Vents location 
Flow front during injection 

With PAM-RTM 

VISIT http://www.esi-group.com/products/composites-plastics/pam-rtm/references for complete video presentation 
Marketing.composites@esi-group.com 

 
Ex3: Complex injection strategy definition (5/13) 

 
 



!  Automatic estimate of injection point location and filling 
time 

Ex4: Quick estimate of optimum 
injection strategy (6/13) 
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192 
seconde
s 

93 
seconde
s 

62 
seconde
s 

192 secondes 

93 secondes 

62 secondes 
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Low resin flow front velocity High resin flow front velocity 

 
Ex5: Porosity reduction (7/13) 
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Ex5: Porosity reduction (8/13)  

 



!  E/E0=AE*exp(BE/x) 
!  σ/σ0=AT*exp(BT/x) 
! Where x = void content in % 

Ex5: Effect of Voids on 
Mechanical Properties (9/13) 

Leclerc Jean-Sebastien; Edu Ruiz, Porosity Reduction using Optimized Flow Velocity in 
Resin Transfer Molding, Elsevier Composites Part A 

Possible reuse  
of RTM simulation results 

in part performance 
assessment 



!  TECABS project floor pan (VW, 
SOTIRA, AIREX, …) : 

!  PAM-FORM helps to Define & 
Optimize: 
!   The process 
!   The holding system 
!   The plies geometry 
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Ex 6: Pre-forming simulation / 
TECABS (10/13)  
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Ex 7: Pre-forming simulation / 
Eurocopter (11/13)  



 Copyright © ESI Group, 2008. All rights reserved. 

Ex 8: Non Crimp Fabric Draping 
(12/13) 

Experimental

Simulation

0° - 90 ° FIBRE ORIENTATION 

Experimental results Simulation results 

Cranfield U. 



Ex 8: Non Crimp Fabric Draping (13/13) 

0° - 90° fibre orientation to mould symmetry 
±45° fibre orientation to mould symmetry 

Cranfield U. 
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After 
Manufacturing 

Long fibers Short fibers 
unreinforced 

2 mm 

Fiber length 

Mats (GMT) Textile 

Unidirectional 

Distortions (1/2) 



!   Sources of Distortion 
!   Lay-up 
!   Draping effects 
!   Thermal expansion 
!   Chemical shrinkage 
!   Cure temperature and uniformity of the field 
!   Tool thermal expansion 

!   Simulation Status 
!   Laboratory validation accounting for all these parameters performed 

in European or French collaborative projects (MAAXIMUS, LCM-
SMART). 

!   ESI ready to engage a cooperative investigation 
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Distortion Analysis (2/2) 
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Long fibers Short fibers 
unreinforced 

2 mm 

Fiber length 

Mats (GMT) Textile 

Unidirectional 

Crash worthiness (1/8) 

Crash 
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Courtesy of EADS-M (EC FALCOM project) 

TSAI-HILL 
Criterion 

Maximum 
 

!  Simulation assumed uniform stiffness 
!  Stiffness is influenced by draping 

Ex1: Preforming Effects on Air 
Frame Rupture Analysis (2/8) 

Discrepancy  
between 

experiment and 
simulation!
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TSAI-HILL 
Criterion 

Maximum 
 

Discrepancy  
between 

experiment and 
simulation!

TSAI-HILL 
Criterion 

Maximum 
 Courtesy of EADS-M (EC FALCOM project) 

!  Simulation assumed uniform stiffness 

Ex1: Preforming Effects on Air 
Frame Failure Analysis (3/8) 
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Fibre re-orientation  
due to forming 

Accounting for 
preforming leads 

to the correct 
location of failure!!  Stiffness is influenced by draping 



!  Micro-voids are highly related to the resin velocity 
!  Critical impregnation velocity 

!  For high performance composites, formation of micro-
voids inside the fiber tows should be minimized 
!   Macro voids 

Inter-tow 

Ex2: Effects of Injection conditions onto 
Mechanical Performance (4/8) 

(J. Bréard) 
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!   Micro voids 
intra-tow 



Ex2: Influence of Porosities on 
Stiffness & Strength 
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Draping and RTM Model 

Lay-up 
+ material 

Lay-up definition 

Draping and 
Porosity effect 
on mechanical 

properties 
Strength analysis Design 

Iteration 



Benefits of ESI Solution 

43 

 

 

!   Help to optimize production time cycle by a better 
understanding and control of the process 

!   Help to reduce production cost by evaluating new 
composites manufacturing strategies 

!   Detect and correct manufacturing defects that would 
impact the structural performances of the part 

!   Allow  realistic description of the formed part, enabling a 
predictive mechanical performance simulation   

 
Marketing.composites@esi-group.com 



RAIDS-OUTILS 
MAPPIC 

LYCOS 
HIVOCOMP 

INFUCOMP 
LCM-SMART 

MAAXIMUS 

HIVOCOMP 
MAPPIC 
LYCOS 

Material 

Forming
  

Injection/
Infusion 

Curing Distortion 

Assembly 

Performa
nce 
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World class projects 



!  EC / TECABS 
!   Floor pan 
!   Link form to crash 

!  FR / MATSIESA2 
!   Thermoplastics forming for dash panels / on-going 
!   Partners: Visteon, Renault, Chomarat 

!  FR / LYCOS 
!   CFRP Thermoplastics seat structures / on-going 
!   Partners: Faurecia, Rhodia, Activetech, Prodhag, RJP Modelage, 

Styl’monde 
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Automotive projects EU projects 

8 Preforms + 5 Foam cores 28 Metallic parts 



!   New Textile technology for  
 Stiffeners   
!   Partners: EADS, Hutchinson, 

CETIM, etc 

!   ESI tasks: Mechanical properties / 
permeability prediction  
 through simple braiding  
 simulation 

RAID-OUTILS (1/2) 
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RAID-OUTIL (2/2) 
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Fibers 

Braiding tools 
Kinematics 

Constraints 

ΓL  
ΓF 

ΓC
1 

ΓC
2 

Braiding/weaving 
simulation for 
accurate geometrical 
representation 

FPM simulation: 
Injection in z direction 
Imposed velocity, 
viscosity and 
pressure at borders 

Result: Pressure gradient 

Darcy’s law 

!  Permeability prediction on a Unit Cell: 



!  Objectives 
!   Achieve radical advances in two materials 

1.  advanced polyurethane (PU) thermoset matrix materials 
2.  thermoplastic self-reinforced polymer composites  incorporating 

continuous carbon fibre reinforcements (Hybrid/SRC) 
!   Assure that these material innovations can be successfully 

translated into high-impact industrial applications 
! Hybrid B-pillar (PU/Hybrid-SRC), composite B-pillar (PU), front 

structure (PU), side closure (PU), seat frame (Hybrid-SRC) and 
suitcase (Hybrid-SRC) 
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HIVOCOMP 

!  HIVOCOMP EC FP7 Project with CRF 
Advanced materials enabling HIgh-VOlume road transport 
applications of lightweight structural COMPosite parts 



	
   

2D fabric forming Joining 

Part 
Mappic 3D 

Yarns Cutting &  
Lay up 

Waste 

	
   

two	
  technologies 	
   :	
  panels	
  and	
   
s1ffeners 	
   
Reduc1on	
  of	
  cost 	
   :	
  38	
  % 	
   
Reduc1o n	
  of	
  1me	
  produc1on 	
   :	
   
25	
  %	
   	
   
	
   

    

	
   	
   :	
   

	
   
  

 
Mappic 3D (1/3)  

: One-­‐shot	
  Manufacturing	
  on	
  large	
  scale	
  of	
  3D	
  upgraded	
  
automo8ve	
  panels	
  and	
  stiffeners	
  for	
  lightweight	
  

thermoplas8c	
  tex8le	
  composite	
  structures	
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Braiding simulation + draping 
(Thermoplastics filament inside) 

Intra yarn simulation of thermoplastics 
diffusion  
FPM (Local model) 
of the melted thermoplastic filaments   
Prediction of intra yarn porosity 

+ compression and temperature 

Inter-yarn diffusion (FPM) 
Prediction of inter yarn porosity 
  
 

Local model 
Numerical experiment 
Statics 
Rupture 
Mapping of properties  
 

Process simulation to get local porosities 
(2/3) 



Braiding simulation 
Local fiber orientation 

Plastic oil pan 

Battery containers 

VPS Statics, NVH  
and crash performance 

Local properties 
Porosities 
 

Prediction of performance based 
upon manufacturing (3/3) 

	
  

(a) (c)

(e) (g)

(b) (d)

(f) (i)(h)

Stiffeners 

Mapping 
 



!  RTM 
!   POLY MONTREAL 
!   ECN 

!  CURING 
! Cranfield U. 

!  DRAPING 
!   INSA LYON 

!  DISTORTION 
!   SWEREA SICOMP 

!  MECHANICAL PERFORMANCE 
!   IFB 
!   KUL 
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Composites partnerships and network 




