

Simulation for mass production of automotive composite structural components

Mathilde Chabin, Arthur Camanho (ESI Group)

November 2012

Lightweight automotive design

- To reduce CO2 emissions (environmental awareness and regulation)
 - Weight-to-power ratio with power limited due to emission regulation
- To cut fuel consumption (selling argument)
- To increase autonomy

Electrification of vehicle results in additional weight (battery) between 250 kg to 350 kg (BMW's MCV, JEC Composites Magazine No 61)

➔ New concept in vehicle architecture and new production processes

Composites in Automotive Industry Statement

Reduce weight using composites material

- Carbon fibers is about 50% lighter than Steel and 30% lighter than Aluminum
- Composites are already widely used in automotive industry for non structural components

Renault Espace composites Started in 1984 Up to 400 vehicles/day

Non structural components Mostly Short fibers – SMC process

 Industrial wants to extend the use of composites to structural components; Mechanical requirements can only be reached with continuous fiber composites

Composites in Automotive Industry

Automotive structural components

- However...
 - Missing know-how and experience on continuous fiber composites design and manufacturing for automotive applications
 - Technology transfer from Aeronautics but industry constraints are different!
- Specific automotive constraints:
 - Production time cycle
 - Process automation
 - Cost of finished part
 - Performances (Crash, Safety...)
 - Recycleability (european regulation ex:REACH)

Composites in Automotive Industry

Automotive structural components / Supporting examples

- Collaborative program "defi composites", LC4 project
- "Low cost Carbon fiber chassis, adapted to automotive production time cycle and safety requirements"

Target (First prototype End 2011):

- integration of safety standard of constructors
- 1000 chassis/day
- Less than 1000 Euros/chassis

6 dies in 2005 with expensive try-outs because of material cost, manufacturing processes

2011 target: 2 dies maximum!

Composites in Automotive Industry

Automotive structural components / pain point

Current practices lay on expensive trials

RTM B-Pillar:

- ~ 100kEuros / Die
- ~ 300 Euros in material per test

STANDARD STEEL

HLE / ALUMINUM

Delamination Ply failure Stiffness Strength

Fragmentation Crushing

7

Agenda of the technical presentations

- Manufacturing (10:30-12:30)
- Assembly (14:00-15:00)
- Physics of materials (15:00-16:00)
- Performances (16:00-17:00)

Composites Manufacturing Simulation for "As Built" Structural Analysis

C get it right®

Composites in Automotive Industry

Automotive structural components: Material/Manufacturing

Fibers	Manufacturing technologies			Production time cycle	Process Automation	Material cost	Mechanical Performances
CONTINUOUS		Filament winding					
		Tape or yarn laying					
		<u>Textile:</u> Manual lay-up			Manual		
		<u>Pre-pregs:</u> Manual lay-up			Manual		
		<u>Textile:</u> -Stamping -Diaphram forming	Α	utomotive s	structural c	omponents	5
		Pre-pregs: T	P			Expensive raw material but no storage concern and recycling possibility	
		-Diaphram forming	S			Expensive raw material, storage condition and short life duration	
SHORT		SMC BMC LFT GMT					Non structural components

C get it right®

Composites materials and processes

Short Fiber Injection (1/2)

Short Fibers Injection (2/2)

- Driver Airbag container: Polyamide matrix / Glass fiber-30% mass fraction
- Modeling:
 - Injection analysis to get fiber orientations
 - Identification of ElastoViscoPlastic Material model with DIGIMAT material model
 - VPS failure analysis using Digimat model

Courtesy of TRW Automotive Safety Systems GmbH and DSM

•LFT decrease weight & cost

LFT: Long Fiber Thermoplastic (2/2) Fiber orientations and damage

- Fluid flow with fibers transport
 - will give final stiffness & strength
- Modeling

get it right[®]

- TP modeled with SPH (meshless method)
- Fiber modeled with beam elements
- Fiber interactions handled through contact algorithms
- Phenomenae not well known !
 - ESI Ready to engage a cooperative investigations

Thermoforming (1/7)

e get it right®

Thermoforming simulation using PAM-FORM (2/7)

PAM-FORM can evaluate:

- Different forming strategies:
 - Stamping, diaphragm (single or double) forming, thermoforming
 - Clamping conditions, process parameters (tool velocity, temperature, pressure...)

Through the prediction of:

- Wrinkling
- Bridging
- Thickness
- Optimum flat pattern
- Contact pressure
- Fiber orientation
- Stresses and strains

Ex1: Wrinkling prediction / forming (3/7)

 UD thermoforming / 20 plies / APC2-AS4 (thermoplastic matrix, carbon unidirectional reinforcement) / Quasi-Isotropic lay-up

18

Ex2: Bridging risk prediction (4/7)

Fabric / 6 plies / PPS Matrix

Courtesy: Delft University of Technology

Ex3: Prediction of laminate thickness and thickness per ply (5/7)

Wing box: UD and Fabrics / 8 plies

Complex clamping conditions determined with PAM-FORM2G

Courtesy: Airbus UK

chordw is e location

www.esi-group.com

100

200

300

400

500

600

700

Ex4: Flat pattern optimization (6/7)

J-RIB: 4 plies / thermoforming

Ex5: Integrated shape and tooling optimization (7/7)

e, get it right®

Standard shape

Integrated shape

computations

Liquid Composites Molding (LCM) RTM / Infusion (1/13)

get it right®

Liquid Composites Molding Simulation (2/13)

- PAM-RTM can evaluate and optimize
 - Injection strategy (RTM, VACUUM INFUSION, VARTM...)
 - Injection pressure and flow rate
 - Injection gates, vents and vacuum ports location
 - Molding temperature
 - Flow media
- Through the prediction of
 - Dry spots
 - Filling and curing times
 - Flow front velocity / Fiber washing
 - Pressure in the mold

Taking into account

• Fiber angle variation (permeability variation) of the preform

www.esi-group.com

Ex1: Resin flow front analysis (3/13)

NCF floor pan injection

TECABS: RENAULT – Mines Douai

get it right®

Ex2: Degree of filling, filling and curing time prediction (4/13)

Filling time

Courtesy: EADS Innovation work,

www.esi-group.com

get it right®

Marketing.composites@esi-group.com

CEk3: Complex injection strategy definition (5/13) get it right®

Inner liner for hull reinforcement

- Very complex part including high shapes (1.2m)
- Injection analysis allows determination of injection strategy (injection points/channels and vents location as well as open/closing sequence) to minimize:

Flow front during injection

With PAM-RTM

- Dry spots
- Filling and curing times
- Fiber washing
- Pressure in the mold

Initial injection points

Secondary injection points/channels

Vents location

VISIT http://www.esi-group.com/products/composites-plastics/pam-rtm/references for complete video presentation **Courtesy:** PPE & Azimut www.esi-group.com

Ex4: Quick estimate of optimum injection strategy (6/13)

 Automatic estimate of injection point location and filling time

Ex5: Porosity reduction (7/13)

Low resin flow front velocity

High resin flow front velocity

Ex5: Porosity reduction (8/13)

Void content for different **Injection strategies Constant pressure Constant flow rate Optimized flow rate**

Optimized flow rate profile

www.esi-group.com

get it right®

Ex5: Effect of Voids on Mechanical Properties (9/13)

• $E/E_0 = A_E^* \exp(B_E/x)$ • $\sigma/\sigma_0 = A_T^* \exp(B_T/x)$

Where x = void content in %

Possible reuse of RTM simulation results in part performance assessment

Leclerc Jean-Sebastien; Edu Ruiz, Porosity Reduction using Optimized Flow Velocity in Resin Transfer Molding, Elsevier Composites Part A

Ex 6: Pre-forming simulation / TECABS (10/13)

- TECABS project floor pan (VW, SOTIRA, AIREX, ...) :
- PAM-FORM helps to Define & Optimize:
 - The process
 - The holding system
 - The plies geometry

www.es

Ex 8: Non Crimp Fabric Draping (12/13)

Simulation results

Experimental results

Cranfield U.

www.esi-group.com Copyright © ESI Group, 2008. All rights reserved.

Ex 8: Non Crimp Fabric Draping (13/13)

±45° fibre orientation to mould symmetry

0° - 90° fibre orientation to mould symmetry

Cranfield U. www.esi-group.com

Distortions (1/2)

Distortion Analysis (2/2)

Sources of Distortion

- Lay-up
- Draping effects
- Thermal expansion
- Chemical shrinkage
- Cure temperature and uniformity
- Tool thermal expansion

Simulation Status

- Laboratory validation accounting for all these parameters performed in European or French collaborative projects (MAAXIMUS, LCM-SMART).
- ESI ready to engage a cooperative investigation

Crash worthiness (1/8)

e get it right®

Ex1: Preforming Effects on Air Frame Rupture Analysis (2/8)

Simulation assumed uniform stiffness
Stiffness is influenced by draping

Discrepancy between experiment and simulation

Courtesy of EADS-M (EC FALCOM project)

Maximum

39

TSAI-HIL Criterion

Ex1: Preforming Effects on Air Frame Failure Analysis (3/8)

Simulation assumed uniform stiffness
Stiffness is influenced by draping

Accounting for preforming leads to the correct location of failure

Maximum

Courtesy of EADS-M (EC FALCOM project)

Ex2: Effects of Injection conditions onto Mechanical Performance (4/8)

- For high performance composites, formation of microvoids inside the fiber tows should be minimized (J. Bréard)
 - Macro voids Inter-tow

- Micro voids intra-tow
- Micro-voids are highly related to the resin velocity
- Critical impregnation velocity

Ex2: Influence of Porosities on Stiffness & Strength

Draping and

properties

www.esi-group.com

Benefits of ESI Solution

- Help to optimize production time cycle by a better understanding and control of the process
- Help to reduce production cost by evaluating new composites manufacturing strategies
- Detect and correct manufacturing defects that would impact the structural performances of the part
- Allow realistic description of the formed part, enabling a predictive mechanical performance simulation

e get it right®

EC / TECABS

- Floor pan
- Link form to crash

Automotive projects EU projects

FR / MATSIESA2

- Thermoplastics forming for dash panels / on-going
- Partners: Visteon, Renault, Chomarat

FR / LYCOS

- CFRP Thermoplastics seat structures / on-going
- Partners: Faurecia, Rhodia, Activetech, Prodhag, RJP Modelage, Stvl' monde

RAID-OUTILS (1/2)

- New Textile technology for Stiffeners
 - Partners: EADS, Hutchinson, CETIM, etc
- ESI tasks: Mechanical properties / permeability prediction through simple braiding simulation

RAID-OUTIL (2/2)

Permeability prediction on a Unit Cell:

HIVOCOMP EC FP7 Project with CRF

Advanced materials enabling **HI**gh-**VO**lume road transport applications of lightweight structural **COMP**osite parts

Objectives

- Achieve radical advances in two materials
- 1. advanced polyurethane (PU) thermoset matrix materials
- 2. thermoplastic self-reinforced polymer composites incorporating continuous carbon fibre reinforcements (Hybrid/SRC)
 - Assure that these material innovations can be successfully translated into high-impact industrial applications
 - Hybrid B-pillar (PU/Hybrid-SRC), composite B-pillar (PU), front structure (PU), side closure (PU), seat frame (Hybrid-SRC) and suitcase (Hybrid-SRC)

Mappic 3D (1/3)

get it right[®] : One-shot <u>Ma</u>nufacturing on large scale of <u>3D</u> upgraded automotive <u>panels</u> and st<u>i</u>ffeners for lightweight thermoplastic textile <u>composite</u> structures

get it right®

Process simulation to get local porosities

+ compression and temperature

Braiding simulation + draping (Thermoplastics filament inside)

Local model Numerical experiment Statics Rupture Mapping of properties

COMFIL®

Intra yarn simulation of thermoplastics diffusion FPM (Local model) of the melted thermoplastic filaments Prediction of intra yarn porosity

Prediction of inter yarn porosity

Prediction of performance based upon manufacturing (3/3)

Local properties **Porosities**

Braiding simulation Local fiber orientation

Mapping

(i)

Stiffeners

Plastic oil pan

Battery containers

VPS Statics, NVH and crash performance

www.esi-group.com

Composites partnerships and network

52

www.esi-group.com