Investigation of novel preforming technologies for large-scale composite production

FEIPLAR - International Composites Conference November 7th 2012, São Paulo

Andreas Schnabel C. Greb, D. Michaelis, J. Haring und T. Gries

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case Study
- Conclusion

RWTH Aachen University

- founded in 1870 by industrial initiative
- 31.500 students in 106 courses of study
- 450 chairs
- 4400 assistant lecturers (mostly PhD positions)
- 2500 non-academic members of staff
- 650 apprentices
- 650 Mill. € total budget
- thereof 30 % third party funding

Aachen - in the heart of Europe, close to

- Düsseldorf
- Cologne
- Belgium
- The Netherlands
- Paris

3

Institut für Textiltechnik at RWTH Aachen University

Departments

- Man made fibers
- Textile machinery
- Smart & medical textiles
- Fiber-reinforced composites

Numbers

- 85 scientists
- 55 members of service staff
- 150 graduate research assistants
- Budget 14,3 mio. €

Fiber-reinforced composites at ITA

Technologies and process chains for the production and quality assurance of preforms for fiber-reinforced composites

 Development of new processes, machines and textile reinforcement structures

- Design
- Simulation
- Prototyping
- Production

Reinforcement fibers:

 Carbon, glass, aramid, ceramics, high strength polymers

Matrices:

Thermosets, thermoplastics, concrete, metals

5

Mass production technologies for textile reinforcement structures

Motivation

- Increasing fuel costs and electric vehicle concepts require lighter car body structures
- Fiber-reinforced plastics (FRP) have great potential for weight saving (excellent weight/strength ratio)

Problem

- High cycle times due to manual and semi-automated production
- High production costs due to the production of textile reinforcement structures

Approach

Combination of single- and multi-step preforming

- Single-step preforming: production of "Tailored Textiles" with locally adjusted properties
- Multi-step preforming: converting "Tailored NCF" and "Tailored Braids" into near-netshape preforms in a sequence of automated process steps

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case Study
- Conclusion

Single-step preforming

Production of near-netshape semi-finished parts in one production process

- Non-crimp fabrics (NCF) with locally adjusted properties \rightarrow *Tailored NCF*
 - Fiberorientation
 - Thickness
 - Drapability
 - Bending stiffness
- Benefits for preforming
 - Reduced cutting operations
 - Reduction of scrap
 - Reduced handling operations
 - Eased handling operations

Production of Tailored NCF requires enhanced production technologies

Single-step preforming

State of the art: NCF and production technology

- Non-crimp fabrics (NCF)
 - Adjustable fiber orientation
 - Adjustable number of layers
 - Constant drapability
 - Constant layer set-up

<image><image>

- Production technology
 - Warp-knitting machine with multiaxial weft-insertion
 - High productivity
 - Industrial established

Production technology for Tailored NCF

Enhancement of multi-axial warp-knitting machinery

- Tailored NCF
 - Locally adjusted thickness
 - Locally adjusted fiberorientation
 - Locally adjusted drapability

Local reinforcements on NCF

adjusted stitch type

Production technologies

- Feeding module
- Adaptive pillar thread bar
- Electro-mechanical driven guide-bar
- Electro-mechanical driven beam drive
- Cutting and stacking modul

Production technology for Tailored NCF

Enhancement of multi-axial warp-knitting machinery

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case Study
- Conclusion

Multi-step preforming

Automated preform assembly

- Efficient and quality-oriented production technologies for textile preforms via
 - Use of Tailored NCF
 - Increased production speed of single process steps
 - Parallelization of process steps
 - Transition from a sequentiel to a continuous production

Multi-step preforming: Cutting

Cutting of reinforcement textiles

- CNC-cutter-tables (2D)
 - Oscillating knife
 - Rotation cutting disc
 - Laser

- Three-dimensional edge-trimming
 - Robotically guided
 - Ultrasonic knife
 - Cutting of complex geometries

153

Multi-step preforming: handling

Handling device

- Robot guided needle gripper device
- Fast and reproducible pick & place operations
- Onboard charge coupled device (CCD)
 Camera for quality assurance (QA) and positioning

Multi-step preforming: joining

Binder application

- Thermoplastic binders
- Bisphenol-A based epoxies
- Permanent adhesive coating

Binder application

Binder activation

Onesided sewing

- Tufting
- Onesided ITA-Stitching
- Blindstitch
- Onesided stiching (OSS)

Onesided sewing technologies

Multi-step preforming: quality control

FALCON (fiber automatic life control)

- In-line-monitoring-system for
 - Textur (material, textile type)
 - Orientation and geometry of textiles
 - Defects in textiles (gaps, foreign objects)
 - Positioning-quality of cuts

Perspective

- Miniaturization of monitoring device
- Integration into various end-effectors
- Establishment of closed loop control for automated preforming processes

Monitoring end-effector

18.3

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case study
- Conclusion

Case study: Square shaped part with local reinforcement

Shell: 16 layers of glass fibers, quasi-isotropicReinforcement: 16 layers of glass fibers, quasi-isotropic

Cut-out: 80x40 mm

Practical Relevance

- Wall linings in airplanes
- Floor structures in cars / trains

20.

Case study: development of process chains

4-step methodology

Step	Tools		Results					
1. Creation of a	Inquiry		Product dataTechnology data					
decision basis	Experiments		Economical data					
2. Combination of	Free combination	Brainstorm	 Process chain alternatives 					
process modules	Creativity methods							
	Pictograms		Choice of technologiesTechnology chain alternatives					
3. Developement of technology chains	Spider-diagrams	OM OM OM OM OM OM OM OM OM OM	Choice of technology chains					
	Technologiy matrices	Bulkery septimized septimized Authory septimized septimized Authory septimized septimized Authory Septimized Septimized Authorship Septimized Septimized Authorship Septimized Septimized Septimized Septimized Septimized </th <td></td>						
	Efficiency analysis	Statistical (1996) 2 3 1	Production facilityOperation chart					
4. Process chain development	Product web	Prozessschritt	 Quantitative and qualitative process chain evaluation 					
	EcoPreform	5,45 egen ung_ zmal Zmal						

Process chain 1

Automated processing of standard NCF

- Parallel work of preformcenter (automatic) and cutting table (controlled by a worker)
- Cutting table
 - Cutting both fabric typs
 - Positioning
- Preformcenter
 - Handling and joining
 - Edge-trimming and insertion of disruption
 - Handling / Storage

Process chain 2

Automated processing of Tailored NCF

- Synchronous execution of process steps
 - Feeding of non-crimp fabric layers
 - Insertion of local reinforcement
 - Joining of all layers
 - Cutting
 - Insertion of disruption (stamping)
 - Handling / Storage

23.

Economic evaluation

EcoPreform:

- xls.-tool developed at ITA
- Flexible, easy to use and able to analyze various process chains
- Cycle time and costs

Approach:

- Entering basic data into EcoPreform
 - Database (experimentally generated)
 - E.g. costs, speeds, materials, machines,...
- Modelling process modules
- Modelling the described process chains
- Calculating cycle time and costs for different lot sices

Economic evaluation

EcoPreform

reformcenter																				
nschaffungspreis (€)						5	500.000,	,00 €												
utzungsdauer <mark>(</mark> Jahre)								10												
inssatz (%)						ZuschnittCu	itter	Daten eingeben	Eing	abedaten löscher		Gesamtkosten	Maschinenkoster	Lohnkosten	Materia	alkosten Ge	esamtzeit	t Nebenzeit	Hauptzeit	Pro
enötigte Fläche (m²)									Übersich	t Prozessschritt:		5,87€	0,11€	5,7	1€	0,04 €	6,50	0,80	5,1	70
			Tätigkeit Element					Eir	nzelwert	Einheit	Verbrauch	Kosten			Parameter	Einzelwert	Einheit			
eistung It. Leistungsschild (kW)				Vorbereitung N	Aaterial	Bediener				0,538833333	€/min			. €		Schnittgeschw.	2,	00 m/min		
urchschnittliche Leistung	jsausnutz	ung (%)						Cutter	Cuttertisch	Einzelrollenzufuet	-	0,02	€/min			- €		Schnittlänge	45	00 mm
urchschnittliche Leistung	saufnahn	ne (kW)				Vorbereitung N	Maschine	Bediener				0,538833333	€/min		0,8	0,86€		Komplexitätsfaktor	9 0,	00 %
uteil der gesamten Instandhaltungskosten am Anschaffungspreis (%)						Cutter					€/min		0,8	0,01€		Standzeit Wkz.	600,	00 min/Stüc		
ntell der gesamten Insta	nonaitung	skosten ar	n Ansch	aπungsp	reis (%)			Schneidwerkzeug	Cuttertisch	nKlinge			€/Stück	· · · · · ·	004	0,04 €		<u> </u>		
erechnete Instandhaltun	gskosten	(ges.)				Cutten		Bediener				0,538833333			.50	2,69€				
								Cutter Cutter Zusatzzeit			+		€/min €/min		,20	0,04 € 0,02 €		#Bediener Vor Mat #Bediener Vor Mas		
Prozesskette	Inde	x Rüstfakto	r Ve	rhältnis zu	m vorherige	en Schritt	var Start (Gesamtkosten	Maschine	enkosten	Loh	inkosten	Materialko	ir	amtzeit	Nebenz	reit	Hauptzeit	2	
Null	_																		2	
VakuumfolienrolleEinlegen	▼ ▼	1 1,	-	• sec		A par O var		-		-		-		-	-			-		
	_	14 1, 13 1.	00 Opar			A par Ovar		0,19		0,00		0,01		,18	0,02		,00	0,01		
GelegerolleEinlegen	-	2 1.				A par Ovar	^	3,07	0,0		2,0		4,00	6,00		t [min]		10,00	12,00	
ZuschnittCutter	•		00 Opar	• seq	O A seq O	A par O var		5,87	Null Vakuumfol		2,0							10,00	12,00	
GelegerolleEinlegen	•			• seq	O A seq O	A par O var		3.07	Lochpapier Gelegeroll ZuschnittC	1					_					
		,	_				•	· · ·	Gelegeroll ZuschnittC											
									Transportz Grundteila	-										
									TeilzumSpr Bespruehe TeilAblegen	-										
									TeilzumSpr Bespruehe	-										
									TeilAblegen TeilzumSpr	-										
									Bespruehe TeilAblegen											
									TeilzumSpr Bespruehe											
									TeilAblegen TeilzumSpr			-								
									Bespruehe TeilAblegen											
									TeilzumSpr Bespruehe			-								

25

Economic evaluation: results

	Process chain 1	Process chain 2
Cycle time [min]	13,4	2,3
Cost per piece [€]	28,6	11,9
Share of material costs [%]	25,7	57,0
Share of wages [%]	61,2	24,5
Share of machine costs [%]	13,1	18,4
Purchasing cost [€]	573.400	2.190.500

Economic evaluation: cost/unit over annual volume

Economic evaluation

Final evaluation of process chain 1 and 2:

- Process chain 2 (Tailored NCF) is more suitable for production of shaped part with local reinforcement
 - Lower unit costs
 - Reduced cycle time
 - Reduced processing time
 - High potential of Tailored NCF for mass production

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case Study
- Conclusion

Case study: BMW 3 series convertible roof segment

Shell: 8 layers of glass fibers, quasi-isotropic (0°, 90°, $\pm 45^{\circ}$ | $\pm 45^{\circ}$, 90°, 0°), 210 g/m² each

Reinforcements: 4 layers of fibers

Stiffeners: Polymethacrylimid (PMI) foam core with 8 layers glass fiber draping

Inserts: CNC-machined aluminum

Process chain 1

Process chain 2

Economic evaluation

- EcoPreform
 - Production examined for one year periods
 - Linear depreceation of machinery within 10 years

EcoPreform (screenshots)

333

Economic evaluation: results

	Process chain 1	Process chain 2
Cycle time [min]	20,8	8,3
Cost per piece [\$]	598,6	590,3
Share of material costs [%]	93,6	95,6
Share of wages [%]	5,1	2,8
Share of machine costs [%]	1,3	1,6
Purchasing cost [€]	589.400	2.240.500

Economic evaluation: cost/unit over annual volume

Annual production volume [1.000 parts/a]

Validation

Process simulation

Software *KukaSim Pro*

KukaSim Pro (Screenshots)

Praktikal validation

Implementation of both process chains at ITA

Iteration / Optimization

Process analysis / optimization

- Process chains are dominated by material costs (~ 95%)
 - Expensive purchase parts (Stringer, Inserts (> 90%!))
 - No material-specific part design
- Cycle time can be reduced to 3.5 minutes
 - Parallelization of stiffener handling
 - Parallelization of Insert handling

Economic evaluation

Final evaluation of process chain 1 and 2:

- Process chain 2 (Tailored NCF) is more suitable for production of convertible roof segment
 - Lower unit costs
 - Reduced cycle time
 - Reduced processing time

 \succ High potential of Tailored NCF for mass production

Extended economic evaluation

Extended evaluation

- Overhead costs (distribution structure)
- Dynamic economic evaluation
- Life cycle assessment (LCA)
 - Cradle to gate
 - Cradle to crave

Content

- Introduction
- Single-step preforming
- Multi-step preforming
- Preliminary case study
- Case Study
- Conclusion

Conclusion

Automated production technologies for textile preforms are the key to a cost-efficient production of fiber reinforced plastics

- Continuous production of Tailored NCF with locally adjusted properties
- Automated preform assembly for the production of complex, near net-shape textile reinforcement structures
- \succ Both cycle time and costs can be reduced significantly
- \succ Developed technologies have high potential for mass production

We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for supporting and funding the FOR860 working group of researchers ("The development of new process chains for fibre-reinforced plastic components and the integration of preforming, forming and crosslinking processes").

Thank you for your Attention!

Contact: and reas.schnabel@ita.rwth-aachen.de

RNTHAACHEN UNIVERSITY

