

GRUPO JUSHI

Fibras de Vidro de Alto Desempenho para Estruturas em Composites

E6 & ViPro

Ismael Corazza

Fibras de Vidro de Alto Desempenho para Estruturas em Composites

E6 & ViPro

Tópicos

Grupo Jushi & Zhengshi Group - Perfil da Empresa

Evolução Histórica dos Moinhos de Vento

Desenvolvimento e Tendências – Energia Eólica

A Nova Era em Fibras de Vidro para Reforços

GRUPO JUSHI

Estruturas em Composites de Alto Desempenho

Perfil da Empresa

Grupo Jushi – Especializado na produção de fibras de vidro; 03 (três) fábricas localizadas na China nas cidades de Tongxiang, na Província de Zhejiang; Jiujiang, na Província de Jiangxi e em Chengdu, Província de Sichuan. Com capacidade instalada de produção de 1.000.000 tons e mais de 8.000 colaboradores. A empresa tem subsidiárias no Canadá, Hong Kong, África do Sul, Coréia do Sul, Itália, Índia e Espanha.

Posição na Indústria

- Uma das mais completas linhas de produtos na indústria de fibras de vidro.
- Tecnologia avançada, pesquisas e desenvolvimento de classe mundial.
- Unidades fabris com as 04 maiores linhas de produção de fibras de vidro do mundo com capacidade anual de 100,000 t, 120,000 t, 140,000 t e 160,000 t respectivamente.
- Nova Unidade de Produção no Egito
- Investimentos e crescimento

Tecnologias de Classe Mundial

- Projeto e construção de grandes fornos
- Fusão de vidro com combustão a oxigênio
- Formulação e sintetização de produtos químicos
- Formulação de vidro de alta performance tipo E6& ViPro
- Menor Pegada Ecológica
- Tecnologia de manuseio e embalagem automáticas

Portfólio de Produtos – JUSHI GROUP

- Roving
- Roving Direto
- Tecidos
- Manta
- Fibra Picada
- Tipos de Vidro
 - ❖ ViPro, E6, E, C

Zhenshi Group Hengshi Fiberglass Fabrics Co.,Ltd

- Empresa Sino-Americana fundada em agosto de 2000 pela aliança entre o Grupo Chinês Zhengshi e Fame Success Investments localizada em Tongxiang – China.
- Especializada na produção e comercialização de tecidos complexos / multiaxiais em fibra de vidro para os mercados de energia eólica, equipamentos industrias e náutico.
- Moderno parque industrial com 62 teares Liba e MAYER KAL com capacidade instalada para produção de 80.000 toneladas/ano
- Empresa com certificação ISO9001,ISO14001 e ISO18001 certified e principais produtos certificados pelos laboratórios LR,GL and DNV

Thermos plastic fabric CompofilTM-PP series

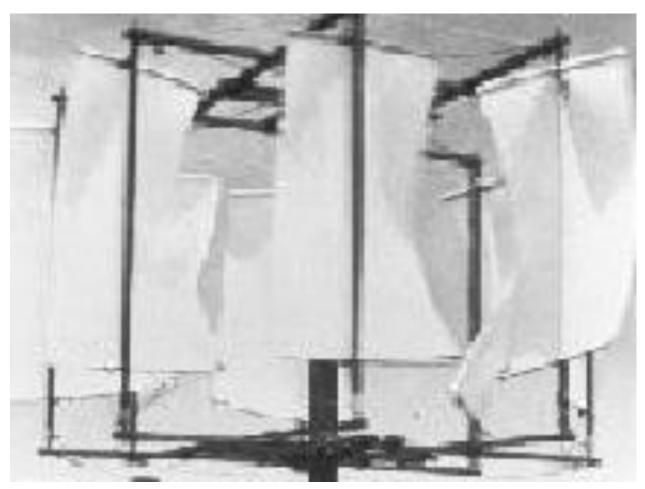

E-Stitched Combo Mat Multi-axial series

E-Stitched Combo Mat Two stages,+/-45° series

E- Stitched Combo Mat 0° /90° series

Glass Stitched Combo Mat UD(Hot-melt)

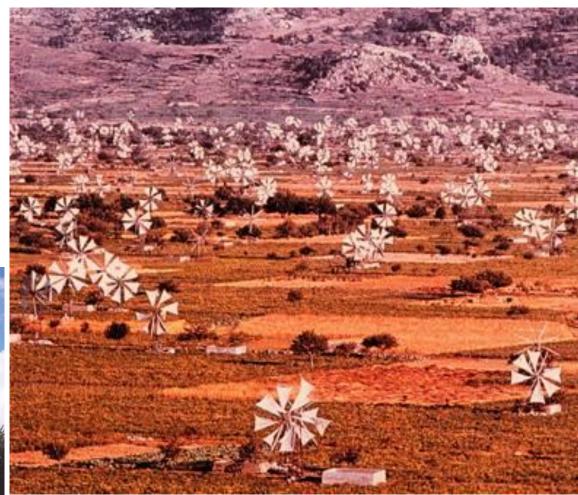
Portfolio de Produtos


Characteristic of Stitched Mat

Evolução Histórica dos Moinhos de Vento

Referencias histórias apontam para a existência, no Nilo – Delta, do primeiro moinho de vendo entre 1000 -1300 AC

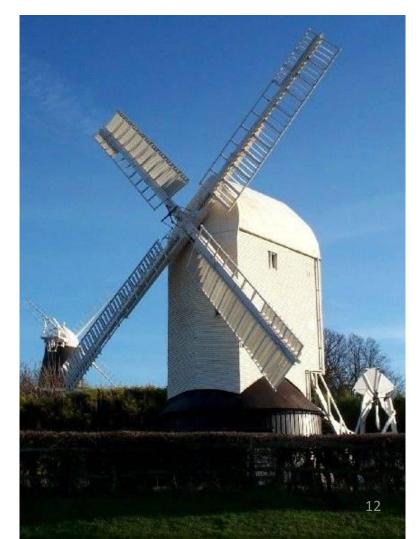
Já no ano 500 AC o Conceito dos Moinhos de Vento para Bombeamento de água era largamente utilizado pelos Persas


Evolução Histórica dos Moinhos de Vento

Grécia (Creta) – 1000 DC

> Bombeamento de Águas

& Moagem de Grãos com a Energia dos Ventos

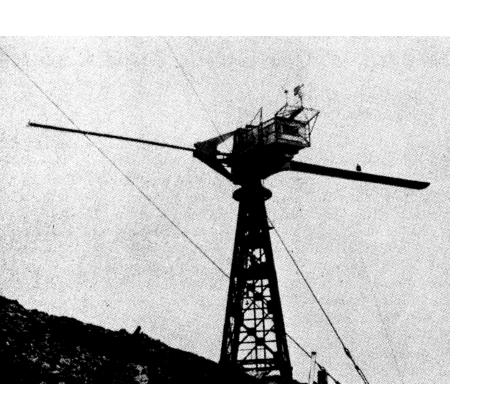


Evolução Histórica dos Moinhos de Vento

Nas Cruzadas em 1185 foi instalado o primeiro Moinho de Vento na Inglaterra em

Weedly, Yorkshire Jack & Jill em Sussex 1821




Evolução Histórica dos Moinhos de Vento

1390 Costa do Mediterrâneo Inicialmente as Pás foram construídas Utilizando o conceito de Velas

Evolução Histórica dos Moinhos de Vento

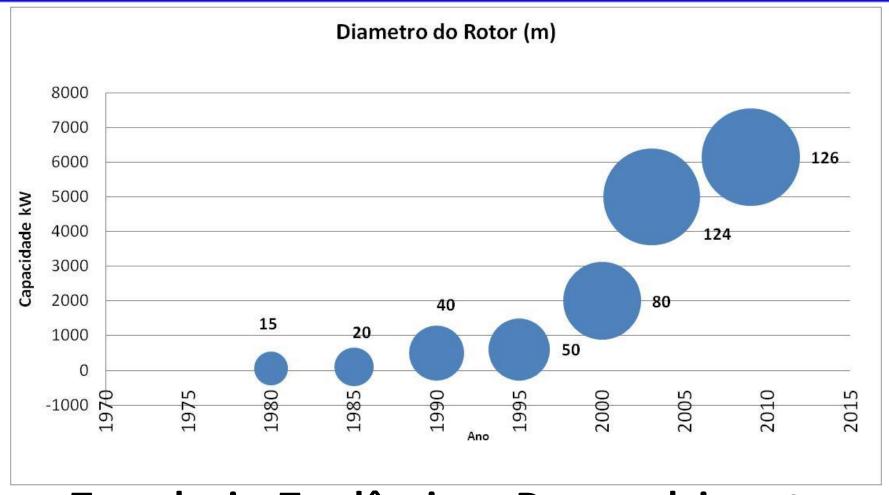
No ano de 1800 foi instalado o Moinho de Vento para Bombeamento de Água nos Estados Unidos

Em 1941, instalado nos Estados Unidos Grampa's Knob

Evolução Histórica dos Moinhos de Vento

Em 1982 foi laminada a Primeira Pá Eólica em Composites

Evolução Histórica dos Moinhos de Vento


A primeira de três turbinas com Rotor de 126 metros de diâmetro e pás eólicas em Composites instaladas em entre Dezembro de 2008 e Março de 2009 na Fronteira da Alemanha e Dinamarca

E3

巨石集团(巴西)华夏复合材料有限公司 JUSHI GROUP (BZ) SINOSIA COMPÓSITOS MATERIAIS LTDA

Tecnologia, Tendências e Desenvolvimentos Rotor/Turbina e Pás Eólicas

Reforços

Fibra de Vidro Convencional Tipo E

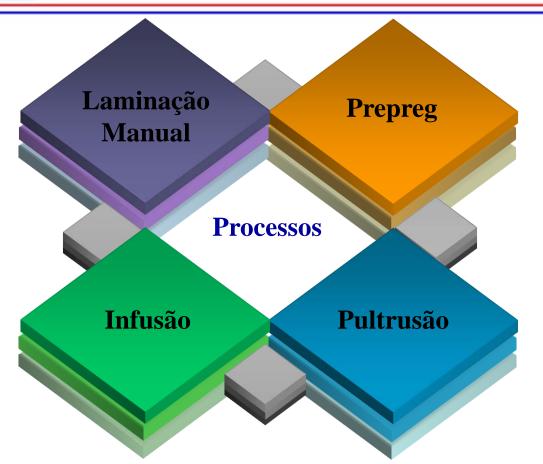
Fibra de Vidro de Alto Modulo

Fibra de Carbono

Fibra Sintética

18

Epóxi


Polyester Insaturado

Vinil Ester

Termoplásticos

Materiais: Alto Desempenho e Amigável com o Meio Ambiente

Tecnologia, Tendências e Desenvolvimentos Matérias-Primas

O Processo de Infusão assistida por Vácuo é atualmente o Processo de maior adequação à produção das Pás por apresentar vantagens de baixa emissão de gases, melhor controle de processo e características do produto final além da boa produtividade.

Tecnologia, Tendências e Desenvolvimentos Rotor/Turbina e Pás Eólicas

INOVAÇÃO

Desde de sua introdução comercialmente em escala industrial em 1938 até os dia de hoje, as fibras de Vidro do tipo E tem atendido as necessidades de mercado.

A nova Era em Fibras de Vidro para Reforços

Nova Geração em Fibras de Vidro

Jushi Group

E7(ViPro) Fiberglass E6-CR Fiberglass

JUSHI GROUP (BZ) SINOSIA COMPOSITOS MATERIAIS LTDA

巨石玻璃纤维主要历史沿革:

History of Jushi Fiberglass:

Desenvolvimento de melhores fibras de vidro resistentes à corrosão E6-CR **B₂O₃ 0%, F₂ trace** O desenvolvimento de uma nova geração de alta resistência e de fibra de 2012 vidro de alto módulo- E7 (ViPro) B₂O₃ 0%, F₂ trace Desenvolvimento de alta resistência e de fibra de vidro de alto módulo - ViPro 2010 O desenvolvimento de baixo teor de fibras de vidro de boro E -CR E6 2009 Produção fibras de vidro tipo E 1984 B₂O₃ 6-7%, F₂ 0.4-0.6%

22

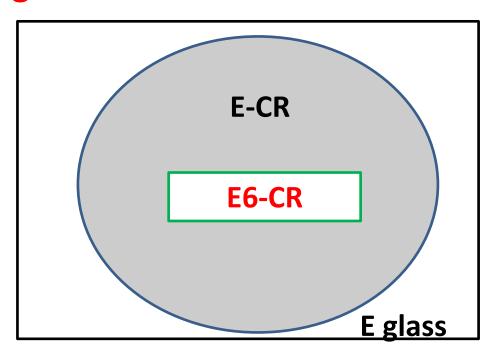
E6 – Desenvolvendo e Estimulando a Indústria de Composites

O Aprimoramento das fibras de vidro através da introdução das fibras de vidro E6™ & ViPro beneficiam aplicações de maior exigências como energia eólica, tubos e varas de sucção para alta pressão.

Tipo de Vidro	Principal Característica & Aplicação
E	Boas propriedades mecânicas e resistência elétrica, uso geral. Histórico
D	Ótima propriedade dielétricas, radares
Α	Alta resistência a ambientes alcalinos – uso geral embalagens
С	Alta resistência Química, véus de superfície
S	Alta resistência mecânica, balística, militar
R	Altas propriedades mecânicas, equipamentos industriais
AR	Alta resistência alcalina e boas propriedades mecânicas, reforço de gesso e cimento
E-CR	Ótimas propriedades mecânicas e resistência a ambientes ácidos, tanque, tubos

ASTM D578-00

何谓E6-CR玻璃纤维: CR Fiberglass?
What is E6-CR fiberglass?


ISO 2078-93

=Boron-free E glass

=E-CR glass

A nomenclatura Vidro E-CR é utilizada para definir o tipo de Vidro de E modificado, livre de Boro em sua composição – característica que promove maior resistência a corrosão a ambientes ácidos

E6 & ViPro Aprimoramento das Fibras de Vidro

- Melhor desempenho do Produto Final
- Ampliação do Campo de Aplicações
- Maior Satisfação de Clientes
- Minimiza a Pegada Ecológica

Jushi Fiberglass

E7(ViPro) Fiberglass E6-CR Fiberglass

Característica - E6 (Vidro ECR)
Extrema resistência a Corrosão
Menor Pegada ecológica – Livre/baixo teor de Boro
Excelente Propriedades Mecânicas
Alta escala de produção x Custo

Características – ViPro (Vidro R)
Alto módulo
Manar Bagada acalágica – Livra/baixa taor de R

Menor Pegada ecológica – Livre/baixo teor de Boro

Altas Propriedades Mecânicas Maior Resistência a Temperatura Maior custo de Produção

Comparativo entre os tipos de Vidro

Composição Vidro	E7	Tad.E	E6-CR
SiO ₂	59-62	52-55	59-61
Al ₂ O ₃	15-17	12-14	13-15
CaO	14-16	22-25	22-25
MgO	8-10	<0.5	0.5-1
B ₂ O ₃	0	5-7	0
F ₂	trace	0.5-1	trace
TiO ₂	<1.5	<0.6	<0.6
Li ₂ O	<0.6	0	<0.3
Na ₂ O+K ₂ O	<1	<1	<0.8
Fe ₂ O ₃	<0.5	<1	<0.5

Propriedades Físicas Compratativas

Itens	Normas	Unit	E7	E Padrão	E6-CR
Densidade	ASTM1505	g/cm³	2.63	2.60	2.65
Índice de Refração	Immersion	/	1.562	1.566	1.566
Coeficiênte de Expansão	ASTM696	10 ⁻⁶ K ⁻¹	5.51	5.96	5.98
Permeabilidade – Constante dielétrica	ASTMD150	/	7.0	6.7	7.0
Temperatura de Transição	ASTMC338	°C	920	842	902

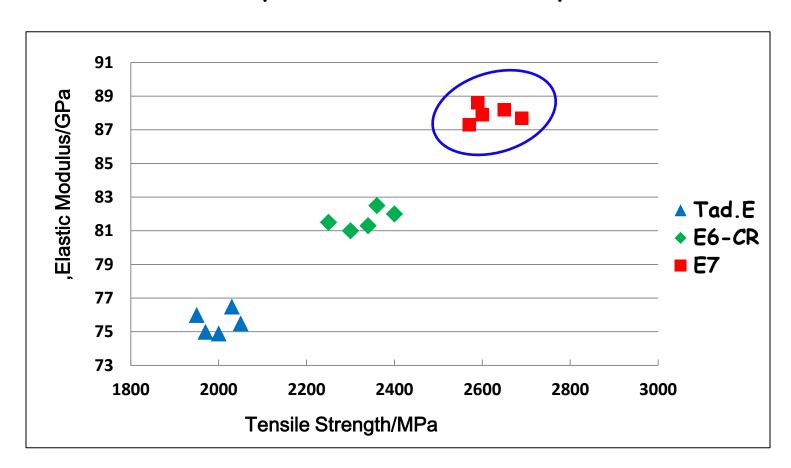
Propriedades Mecânicas Comparativas

As propriedades mecânicas definem o comportamento do material quando sujeitos à esforços mecânicos. Estão relacionadas à capacidade do material de resistir ou transmitir estes esforços aplicados sem romper e sem se deformar de forma incontrolável.

RESISTÊNCIA À TRAÇÃO

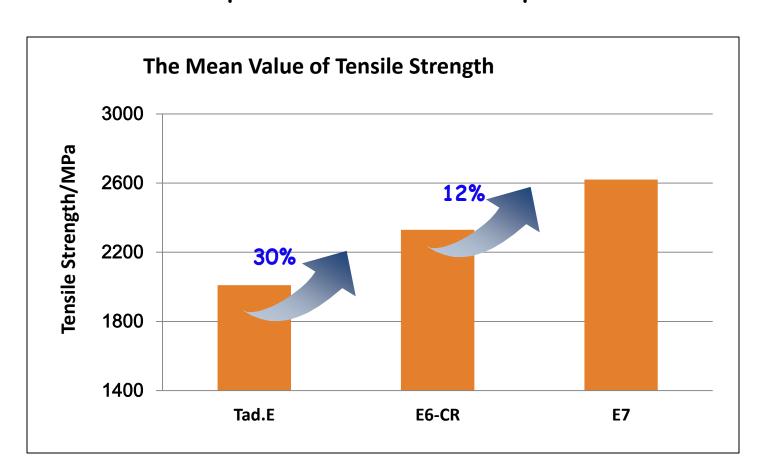
É medida submetendo-se o material à uma carga ou força de tração, paulatinamente crescente, que promove uma deformação progressiva de aumento de comprimento.

Corresponde à tensão máxima aplicada ao material antes da ruptura

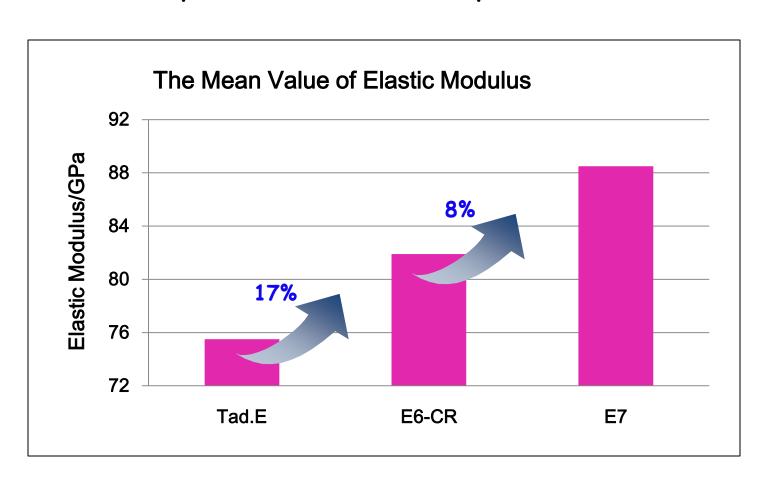

Módulo de Elasticidade

O módulo de elasticidade é a inclinação da curva tensão versus deformação (s x e) na região elástica.

É uma propriedade muito importante pois representa a²²



Propriedades Mecânicas Comparativa



Propriedades Mecânicas Comparativa

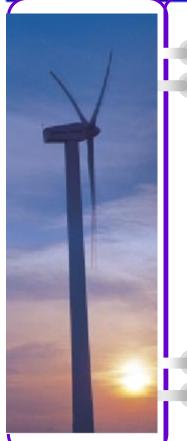
Propriedades Mecânicas Comparativa

E6 – Fibra de Vidro Aprimorada

- Beneficia aplicações que exigem propriedades mecânicas superiores
- Permite a ampliação do uso de Composites nas aplicações orientadas para industria química e elétricas – alta voltagem.

INOVAÇÃO

- Novas Aplicações
- Novos Mercados
- Maior Desempenho
- Aprimoramento Constante
- Meio Ambiente
- Confiabilidade
- Consistência



E6 & ViPro Aprimoramento das Fibra de Vidro

- Amplia a possibilidade de substituição de materiais convencionais como alumínio, madeira e aço.
- Possibilidade o redimencionamento de peças com caracteristicas superiores de leveza, maior resistencia a corrosão e mais resistente mecânicamente.

Propriedades do Roving Direto E6 & ViPro utilizados na Fabricação dos Tecidos para Pás Eólicas

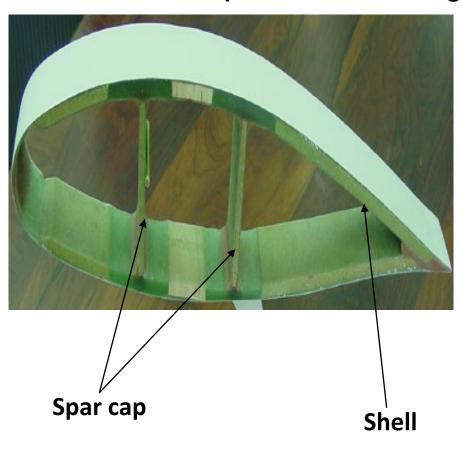
- Ótima característica para Tecelagem Ótima
- Compatibilidade com os diversos tipos de Resinas
- Excelente propriedades mecânicas

E6 & ViPro – A Nova Era em Fibras de Vidro para Reforços Propriedades do Roving Direto

- Baixa formação de Penugem
- Alta resistência a Fricção/Baixo desfibramento
- Excelente transferência durante processo
- Ótimo acabamento final do tecido
- Melhor desempenho de processo durante tecelagem

E6 & ViPro – A Nova Era em Firas de Vidro para Reforços

Propriedades do Roving Direto


- Ótima interação entre as fibras de vidro e matriz polimérica
- Excelente impregnação e molhabilidade
- A velocidade de impregnação depende to tipo de processo de moldagem utilizado
- Compatibilidade com diversos tipos de resinas conforme recomendação de tratamento superficial

E6 – A Nova Era em Firas de Vidro para Reforços Propriedades do Roving Direto

- •Excelentes Propriedades Mecânicas
- •Resistência a Tração
- •Módulo de Tração
- •Resistência a Flexão
- Módulo de Flexão
- •Resistência ao Cisalhamento
- •Resistência a Compressão
- •Módulo de Compressão

Diferentes tipos de peças ou pontos do laminado exigem propriedades diferenciadas. Por exemplo, o Spar Cap exigem alta resistência e módulo

E6 & ViPro – A Nova Era em Fibras de Vidro para Reforços Tecnologia do Grupo Jushi

Inovação Tecnológica do Vidro

Tecnologia na Formulação de Ligantes

Desempenho de Produto

Tecidos Especiais – Zhengshi / Hengshi

Qualidade Assegurada

Posicionamento Mercadológico

Os Produtos da Jushi são qualificados é largamente utilizados pelas maiores empresas do setor de energia eólica para fabricação das pás

- Vestas,
- Siemens,
- Zhongfu Lianzhong Composites Group
- Hui Teng Windpower Equipment
- LM aprovada

A Hengshi foi eleita como melhor Fornecedor do Ano pela Vestas

Nosso Compromisso é
Promover a melhoria contínua das Fibras de Vidros,
Apoiar o desenvolvimento de produtos e Clientes
Oferecer produtos e alternativas com a melhor relação de custo-benefício promovendo o progresso de todos setores industriais.

