

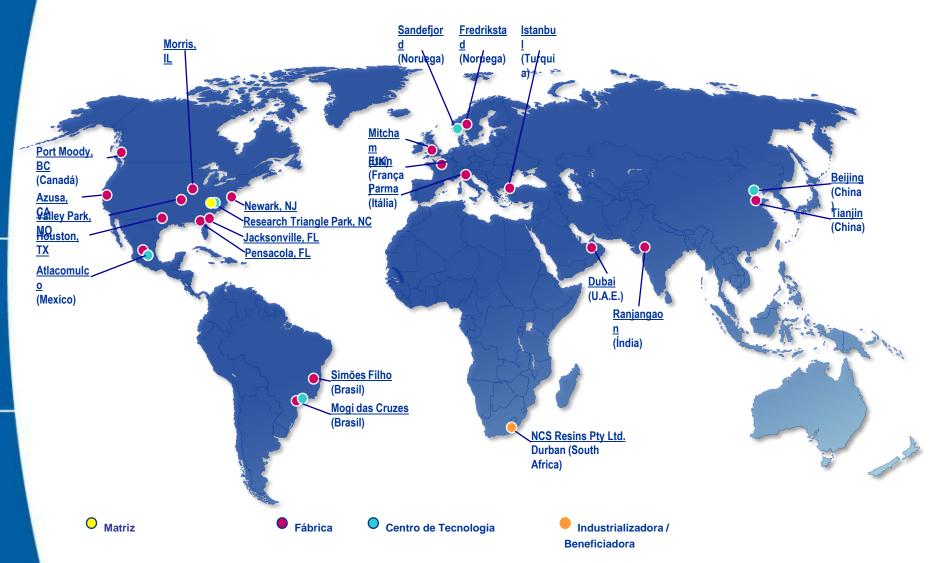
Reichhold Três Décadas em Energia Eólica

FEIPLAR 2012

Everywhere Performance Matters

Antonio Carvalho Filho

Gerente de Aplicações para Ambientes Agressivos



Presença Global Reichhold

REICHHOLD

Mais de 300 Anos de Experiência e Dedicação ao Mercado de Compósitos

Da esquerda para direita: José Antonio Costa, Ademir de Marchi, Fernando Franco, Paulo Tarso, Samir Quintiliano, Antonio Carvalho, Dirceu Vazzoler, Ioannis Drivas e Rogério Lucci.

TÓPICOS

- Início do aproveitamento eólico
- Turbinas eólicas
- Capacidade
- Custo
- Fabricantes
- Perspectivas

O INÍCIO

- 5000 AC: Propulsão de embarcações (Egito)
- 200 AC: Bombeamento de água (China)
- 200 AC: Moínhos (Pérsia)
- 1000 DC: Os cruzados trazem a idéia para a Europa
- Depois de 1000 DC: Grande impulso na Holanda,
 para drenagem de lagos e de pântanos
- Final do Século 20: Início do aproveitamento em grande escala

HISTÓRIA MODERNA DA ENERGIA EÓLICA

Década de 70:

- Crise do petróleo mudou o panorama energético do mundo.
- Reichhold inicia o fornecimento de resinas para pás eólicas.

Década de 80:

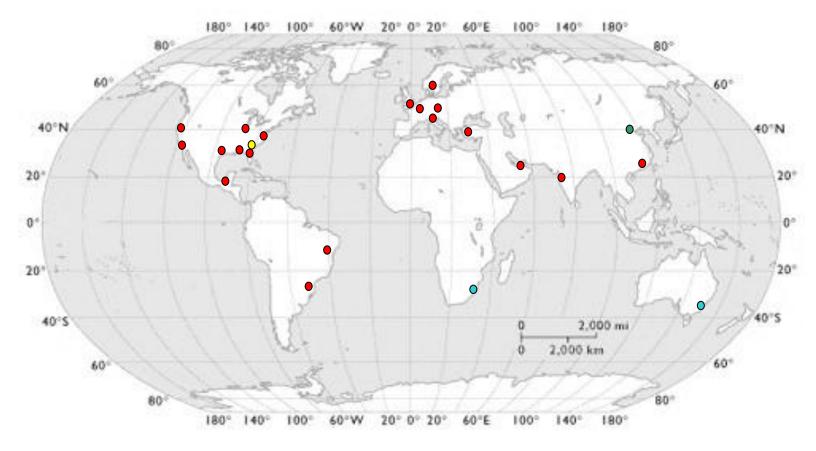
- Política governamental dá início ao aproveitamento eólico na Califórnia.
- 30 turbinas feitas na Europa e instaladas na Califórnia.
- A Califórnia importa 350 turbinas, com capacidade total de 20 MW.

5 MAIORES FABRICANTES DE PÁS

- 1. LM Glasfiber (Dinamarca)
- 2. Tecsis (Brasil)
- 3. Vestas (Dinamarca)
- 4. Gamesa (Espanha)
- 5. Enercon (Alemanha)

PRESENÇA DA REICHHOLD

- Cerca de 2/3 das pás são feitas com epóxi e 1/3 com poliéster.
- A Reichhold é a principal fornecedora global de resinas poliéster insaturadas para pás eólicas desde 1978.
- Além da resina usada para infundir as pás, a Reichhold também fornece resina para as naceles, gelcoats e pastas de colagem.
- A Reichhold tem presença e liderança global neste mercado.



REICHHOLD – PRESENÇA GLOBAL

- World Headquarters
- **Plants**

- Licensees
- **Future Sites**

ASPECTOS ECONÔMICOS

 Amortização do investimento representa mais de 70% do custo da energia.

Custo relativo de uma turbina típica de 2 MW (€ 2006).

	Investimento	Participação
	(€1000/MW)	no custo
Turbina	928	75.6%
Ligação à rede	109	8.9%
Fundações	80	6.5%
Aluguel da terra	48	3.9%
Instalações elétricas	18	1.5%
Consultoria	15	1.2%
Custos financeiros	15	1.2%
Estradas	11	0.9%
Sistemas de controle	4	0.3%
TOTAL	1227	100.0%

ESTRATÉGIAS PARA REDUZIR CUSTO

- Os esforços são focados nas pás
- Tamanho e geometria das pás
- Processo de fabricação das pás

Materiais usados para fazer as pás

MELHORIAS NO PROJETO

- Aumentar o diâmetro da turbina
- Melhorar a geometria das pás
- Avanços na análise estrutural

	1981	2000
Capacidade	25 kW	1,650 kW
diâmetro	10 metros	71 metros
Custo total (\$000)	\$65	\$1,300
Custo por kW	\$2,600	\$790
Produção, kWh/ano	45,000	5,6 milhões

MELHORIAS NO PROCESSO

As Pás modernas são feitas por Infusão de Resina:

 As fibras são colocadas na cavidade do molde. Isso permite otimizar a orientação das fibras.

 A resina infundida expulsa o ar e produz laminados isentos de vazios.

A união das partes é feita por colagem.

MELHORIAS NOS MATERIAIS

- As pás maiores exigem grande rigidez e são feitas com fibras de carbono.
- Avanços no tratamento superficial das fibras de vidro e de carbono permitem vida longa sem perda de rigidez por fadiga.
- Avanços nas técnicas de cálculo estrutural indicam substituição de resinas epóxi por resinas poliéster.

INOVAÇÕES NAS PÁS EÓLICAS

Tecnologia atual:

Dificuldades no projeto	Materiais	Processo
Vento variável	Epoxi / Poliéster / VER	Infusão
Transporte complexo	Vidro / Carbono	Prepregs
Materiais disponíveis	Madeira balsa / Polipropileno	Hand Lay-up
Caracterização dos materiais	Gelcoats e pastas de colagem	

Desafios futuros:

Projeto	Materiais	Processos
Pás mais leves e maiores	Poliéster e fibras de carbono	Redução da mão de obra
Facilidade de fabricação	Maior rigidez e menor peso	Redução na variabilidade
Facilidade de transporte	Maior resistência a fadiga	Redução do ciclo de moldagem
Aerodinâmica	Melhor tratamento superficial das fibras	Qualidade consistente
Redução de custos operacionais		

OBRIGADO!

WWW.REICHHOLD.COM

Everywhere Performance Matters

ANTONIO.CARVALHO@REICHHOLD.COM (11)4795-8205

Everywhere Performance Matters