Development of Composite Complex Geometries Structures – An Automated Fiber Placement Application

Alex C. Bottene
Wellington L. N. de Mello
Rynaldo Z. H. Almeida
Priscila Prado Gomes

Lightweight Structures Laboratory
Laboratório de Estruturas Leves (LEL)
Composites

• The material for affordable structures:
 – High strength/weight ratio;
 – Lay-up directions based on part requirements;
 – Less material waste;
 – Complex part production.

• Applications:
 – Aerospace and aeronautic ...
 • Automotive;
 • Energy;
 • Infrastructure;
 • Oil and gas;
 • Medical;
 • others.
Automated Laminating Processes

- NC machines for automated lay-up composites parts;
- Substitute to hand lay-up process:
The Automated Fiber Placement Process

• Perform automated lay-up of composites tows onto a mould;
 – Individual tow control;
 – Complex parts
 – Compression;
 – Narrow tows;
 – Fiber steering;
 – Alignments;
 – Auto cut and position;
 – Near net-shape;

Source: Evans, D. O. (2001), *Fiber Placement*
The Automated Fiber Placement Process

• Perform automated lay-up of composites tows onto a mould;

Source: Evans, D. O. (2001), Fiber Placement
The Automated Fiber Placement Process

• Machine examples:

1. Robot platform: Coriolis;
2. Gantry: Electroimpact;
3. Rotational mandrel: MAG Cincinnati;

The Automated Fiber Placement Process
The Automated Fiber Placement Process

- Coverage algorithms assessment:

Source: MAG IAS, LLC (2011), Advanced Composite Environment V2.0 – Help Documentation
The Automated Fiber Placement Process

Main operational parameters:
- Feedrate;
- Tow temperature;
- Tow tension;
- Compaction pressure;
- and others.

Main induced defects:
- Gaps;
- Overlaps;
- Tows twist;
- Tows drop;
- and others.

Source: Bottene, et.al. (2012), *Experimental Evaluation of Automated Fiber Placement Manufacturing Parameters*
Objective

Evaluate coverage methodologies and manufacturing parameters...

...for the production of a complex shape composite structure

Source: Mello et.al. (2012), Assessment of Automated Fiber Placement Coverage Generation Algorithms

Source: Bottene et.al. (2012), Experimental Evaluation of Automated Fiber Placement Manufacturing Parameters
The case of study
Methodology

• Three main testing groups:

1. Standard laminate;

2. Theory *versus* real – ratio analysis;

3. Enhanced parameters evaluation.
Methodology

• Group 1:
 – Objective: evaluate the difference between the simulated and real results.
 – Lamination: single ply, 0°, 45°, 90° and -45°.
 – Manufacturing parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedrate</td>
<td>1270</td>
<td>mm/min</td>
</tr>
<tr>
<td>Tow temperature</td>
<td>90</td>
<td>°C</td>
</tr>
<tr>
<td>Tow Tension</td>
<td>2,22</td>
<td>N</td>
</tr>
<tr>
<td>Compaction pressure</td>
<td>1447,9</td>
<td>kPa</td>
</tr>
</tbody>
</table>

– Maximum:
 • Gap: 1,5mm; Overlap: 1,58mm; FAD: 2°
Methodology

• Group 2:
 – Objective: evaluate and stabilize the theory \textit{versus} real ratio;
 – Lamination: single ply, 0°;
 – Three laminations;
 – Coverage parameters based on Group 1 results.

• Group 3:
 – Objective: production of a laminate with enhanced final quality;
 – Lamination: single ply, 0°.
Materials

• Carbon fiber tow:
 – Hexcel Hexply M21/IM7;
 – Carbon fiber with pre-impregnated epoxy resin.

• MAG Cincinnati VIPER 1200 fiber placement;
 – Up to 12 tows (1/8in width);
 – Usable area: 3,0m diameter and 4,0m length.

• Mandrel:
 – Double curvature complex part;
 – Representative rear fuselage section.

• Manual magnifier: Peak 10x – 0,1mm resolution;
Results

• Group 1

ACE - 0°
ACE - 90°
ACE - 45°
ACE - -45°
Laminate - 0°
Laminate - 90°
Laminate - 45°
Laminate - -45°
Results

• Group 1:
 – Gaps:
 • Theory to real – values had decreased;
 – Overlaps:
 • Theory to real – values had increased;
 – Fiber Angle Deviation (FAD):
 • Values were not compared – difficult to measure.
 – Ratio:
 • Impossible to define.
Results

• Group 2:
Results

• Group 2:
 – Gaps:
 • Ratio: from 10% to 54%;
 – Overlaps:
 • Ratio: from 96% to 153%;
 – Measures standard deviation:
 • 0.17mm (under machine and material specification).
 – Standard ratio:
 • 10%.
Results

- Group 3
 - Requirements achieved - maximum Gap: 1,5mm
Conclusion

• Experimentally tested ratio: 10%;
 – Possible to produce parts over 10% simulation limits;
 – Enlarge AFP applications.

• Complex shape composite structures:
 – Fiber Placement can be applied.

• Future work:
 – Evaluation of the manufacturing parameter direct associated with the ratio;
 – Test different geometries for ratio evaluation.
Thank you

www.ipt.br/EN