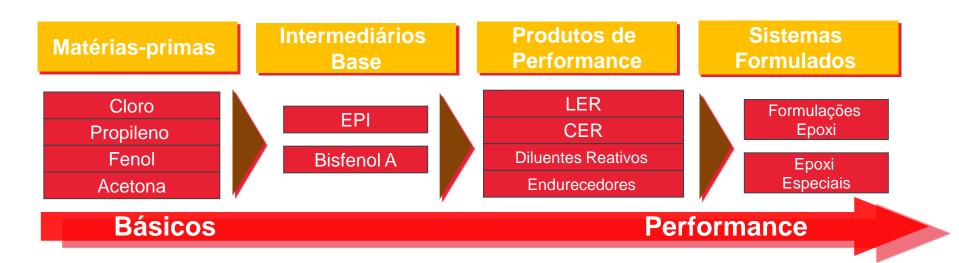


Sobre a Dow

Dow no mundo

- Presença em 160 países
- 52.000 funcionários
- Vendas anuais de US\$ 60 B

Forte Presença na América Latina


Operamos e servimos clientes em todos os países

- +50 anos de presença
- 26 Sites
- 15 Escritórios
- 5000 Funcionários
- 14 Centros de Pesquisa (8 em sites)

Vendas 2011 US\$ 7.2 B

Dow Epoxy é altamente integrada

- Contruída sobre as fundações da epicloridrina
- Maior nível de autosuficiência em matérias-primas do mercado

Centros de excelência em tecnologia

Sistemas epóxi em materiais compostos

Materiais compostos

- A maioria das propriedades de um material composto dependem da combinação do material de reforço e da matriz.
- Porém, em algumas propriedades, o reforço será o fator determinante e a matriz terá uma contribuição limitada, enquanto que em outras propriedades matriz dominará.
- Havera também situações nas quais alguma propriedade será afetada por ambos os componentes ou quando a interação de ambos será crítica para o desempenho final do material composto.

Matiz (Resina) - Fase contínua

- Protege a fibra do meio ambiente
 - Calor, solventes, gases, eletricidade, luz etc
- Responsavel pela forma final da estrutura
- Transfere para a fibra a carga imposta à estrutura

Fibra

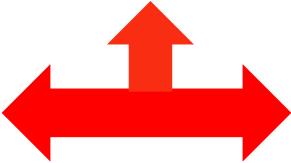
- Responsável pelas propriedades mecânicas:
 - rigidez, resistências etc

Fibra / resina

Uma forte ligação entre fibra e matriz é necessaria para o bom desempenho do material composto

- Tenacidade
- Propriedades elétricas
- Amortecimento

Material Composto

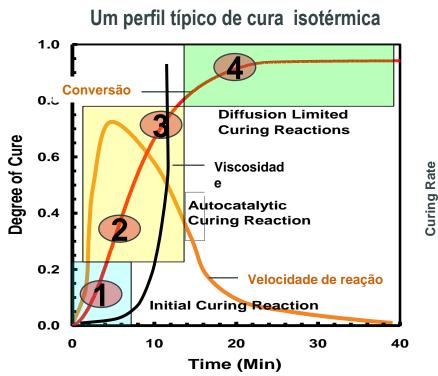


Propriedades importantes para a performance final:

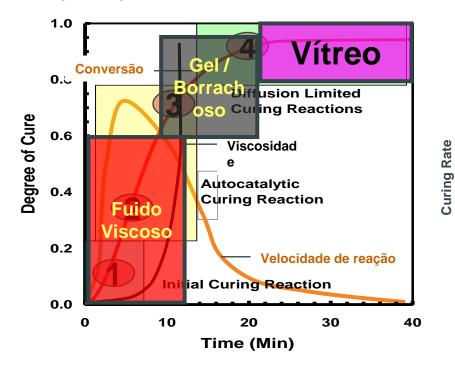
- resistência ao fogo
- resistência à luz
- resistência térmica
- resistência química
- etc

Processo

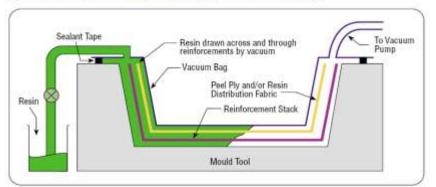
Resina e endurecedor



Propriedades importantes para o processo:


- viscosidade
- perfil de cura
- calor de reação
- etc

Modelo Reo-Cinético


Um perfil típico das fases de uma cura isotérmica

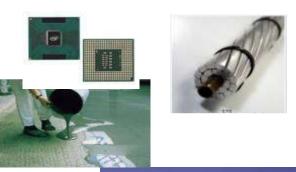
Processo de infusão

Other Infusion Processes - SCRIMP, RIFT, VARTM etc.

- O material de reforço é colocado seco no molde
- O vácuo é aplicado
- A resina é introduzida no molde pela sucção do vácuo
- Após preencher o molde o fluxo de resina é interrompido
- A etapa de cura iniciada

Parâmetros da resina	Caracteristicas desejadas
Viscosidade	Viscosidade deve ser baixa o suficiente para molhar rapidamente as fibras. O intervalo de viscosidade desejado é de 50-1.000 cP
Pot life ou Gel time	Deve ser suficiente para permitir que todo o material de reforço seja molhado • Muito curto – a resina desacelera e deixa áreas secas • Muito longo – o ciclo torna-se desnecessariamente longo
Controle de Temperatura	Temperaturas mais altas podem: • Diminuir a viscosidade inicial da resina • Diminuir muito o tempo de infusão • Acelerar a reação de cura Controles de temperatura devem ser colocados: • na cavidade do molde • nos recipinientes de mistura da resina • nas linhas de entrada da resina • Eventualmente em todas as acima ou em algumas

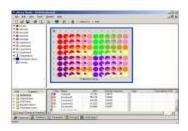
Vamos infundir!!

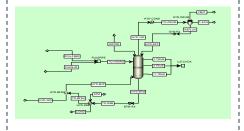


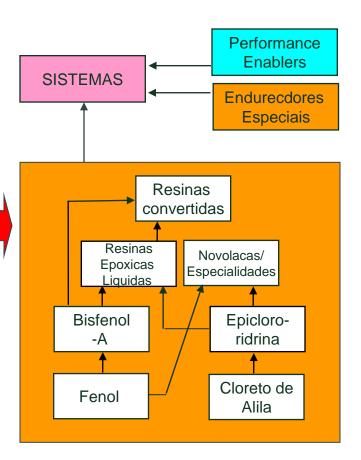
Pás de 80 metros sendo desenvolvidas pela Vestas.

Desenvolvimento de sistemas epóxi para o processo de infusão

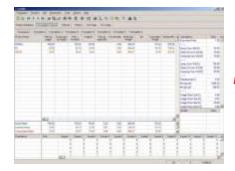
A forma como fazemos desenvolvimentos



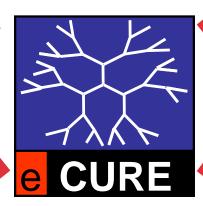


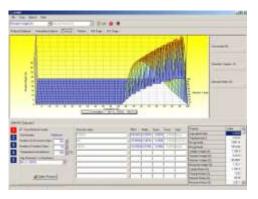




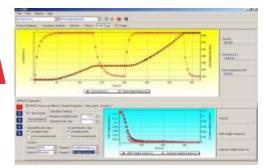


Ciência de materiais e modelagem


Integrated model suite

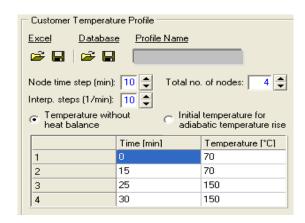


Formulation explorer

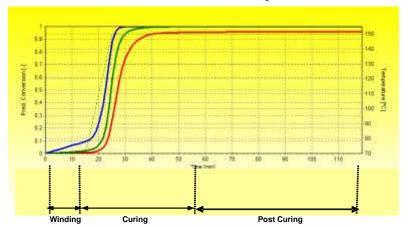


Modelos de propriedades de produto

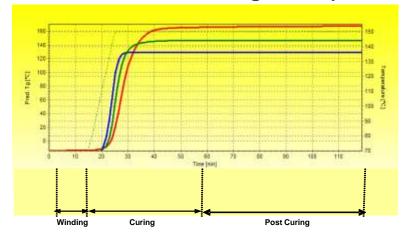
- Thermal (Tg, CTE)
- Mechanical (K_{1c})
- Electrical properties (Dk)


Modelo de processamento de produto

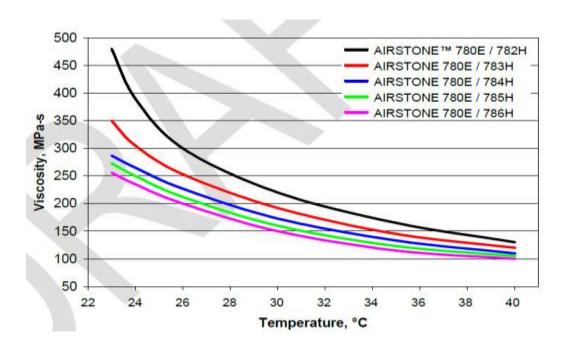
- Rheo-kinetic behaviour
- Exotherm
- Optimize curing cycle


Ciência de materiais e modelagem

Exemplo do uso de DOW™ eCURE para a otimização de processo.

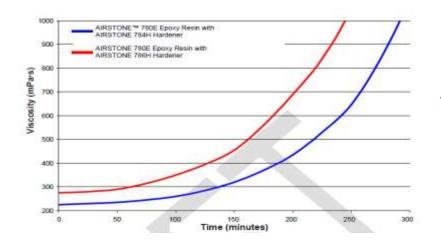

- Input = perfis de tempos e temperatura
- Output = T_g, grau de cura e desenvolvimento de viscosidade

Grau de cura vs. tempo


Desenvolvimento deTg vs. tempo

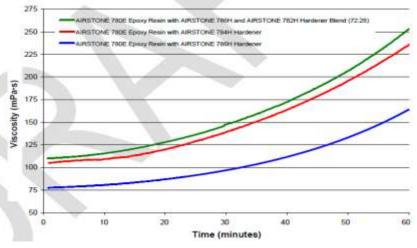
Sistemas de infusão padrão | Propriedades

Viscosidade dos sistemas versus a Temperatura

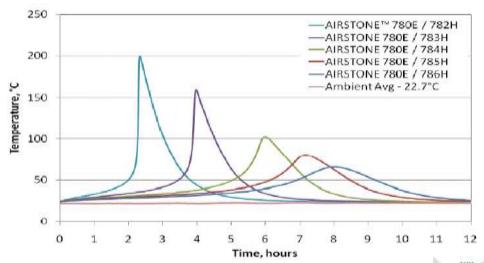


Gel time @23°C

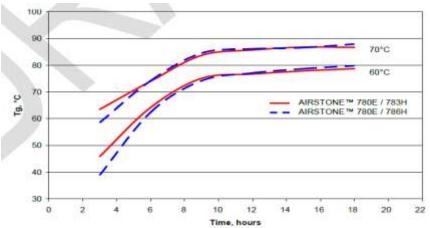
AIRSTONE 780E Epoxy Resin with				
AIRSTONE 782H	STONE 782H AIRSTONE 783H AIRSTONE 784H AIRSTONE 785H AIRSTONE			
Hardener	Hardener	Hardener	Hardener	Hardener
175	321	410	433	460



Sistemas de infusão padrão | Propriedades

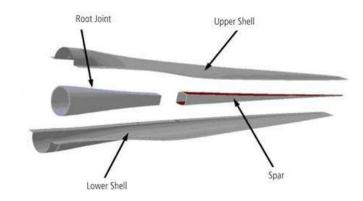

Aumento da viscosidade @ 25°C

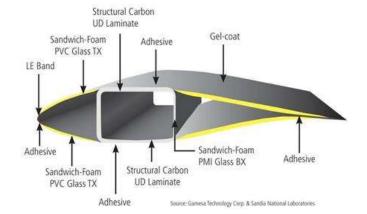
Aumento da viscosidade @ 40°C



Sistemas de infusão padrão | Propriedades

Perfil da exoterma de cura


Desenvolvimento de Tg a 60°C & 70°C



Novos desenvolvimentos

Sistemas Dow para o mercado de pás eólicas

CASCAS

M Novo Sistema
AIRSTONE™ 88x

SPAR, ROOT JOINT:

- Material composto epoxi / fibra de vidro
 - ✓ Linha AirstoneTM 78x
 - ✓ Linha AirstoneTM 73x

ADESIVO:

• Sist

Novo Sistema AIRSTONE™ 87x

SISTEMA DE PINTURA:

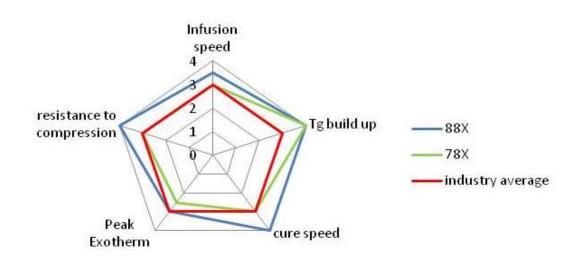
- Resinas epoxi : primer e gelcoat
- Sistema PU : acabamento

ELEMENTO DE NÚCLEO:

Madeira P

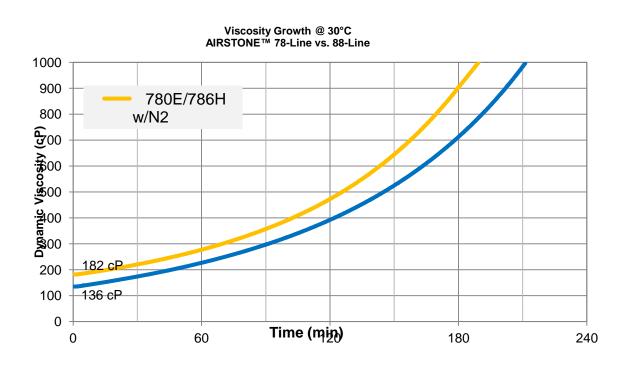
PV

Novo Sistema Compaxx [™] 900



Sistema de infusão Dow AIRSTONE™ 88x

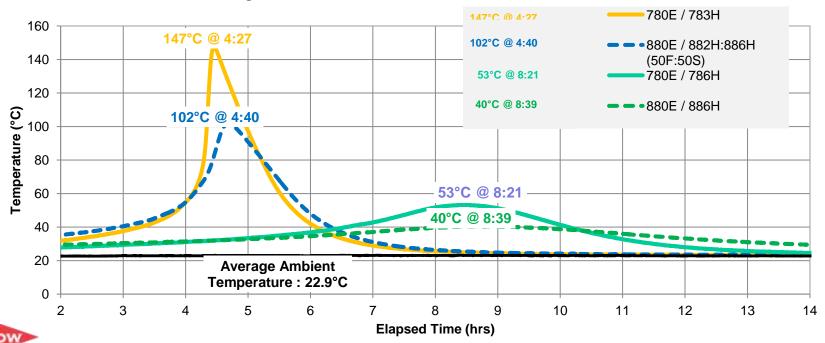
 Desenhado para fornecer uma processabilidade mais fácil e uma melhora nas propriedades mecânicas



 Particularmente adequado para a infusão de pás eólicas longas

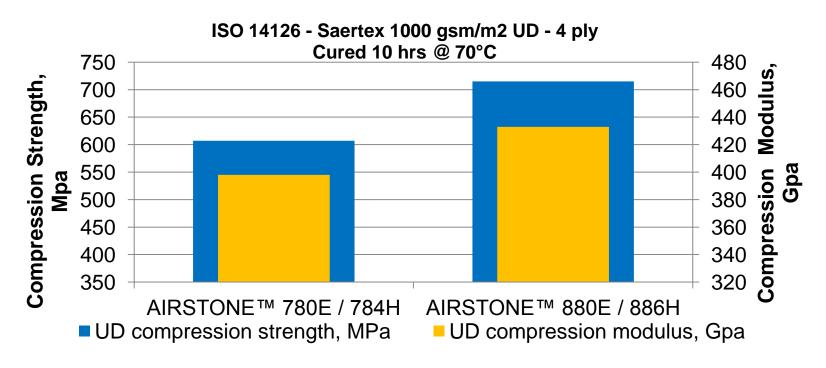
Sistema de Infusão Dow AIRSTONE™ 88x

O sistema de infusão Airstone TM 88x permite aumentar a velocidade de infusão devido à sua viscosidade reduzida que é cerca de 25% menor que a do sistema padrão Airstone TM 78x e do que a média de mercado

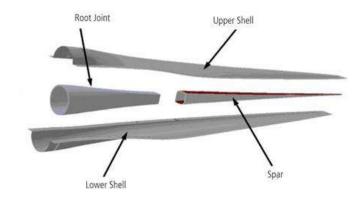


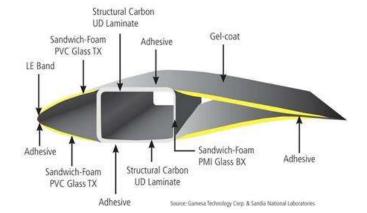
Sistema de Infusão Dow AIRSTONE™ 88x

Apresentado uma velocidade de desenvolvimento de Tg mais alta,o sistema de infusão Airstone TM 88x permite **controlar da exoterma de reação** num amplo intervalo de reatividade.


AIRSTONE™ 78 vs. 88 Infusion Systems

100g Exotherms - 50/50 blend and Slow Hardeners


Sistema de Infusão Dow AIRSTONE™ 88x


O fato do sistema de infusão Dow AIRSTONE™ 88x possibilitar uma melhor molhabilidade das fibras se reflete num **incremento de 10% -15% na resistência à compressão.**

Sistemas Dow para o mercado de pás eólicas

CASCAS:

- Material composto epoxi /fibra de vidro
 - ✓ Linha Airstone TM 78x
 - ✓ Linha Airtone TM 760x

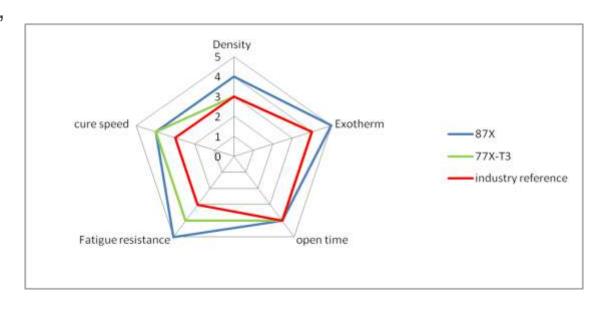
SPAR, ROOT JOINT:

- Material composto epoxi / fibra de vidro
 - ✓ Linha AirstoneTM 78x
 - ✓ Linha AirstoneTM 73x

ADF'

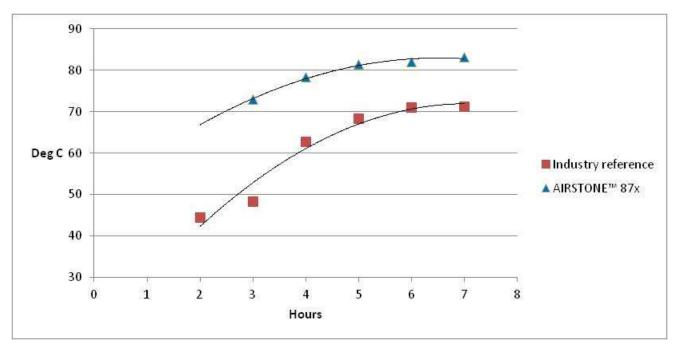
Novo Sistema AIRSTONE™ 87x

SISTEMA DE PINTURA:

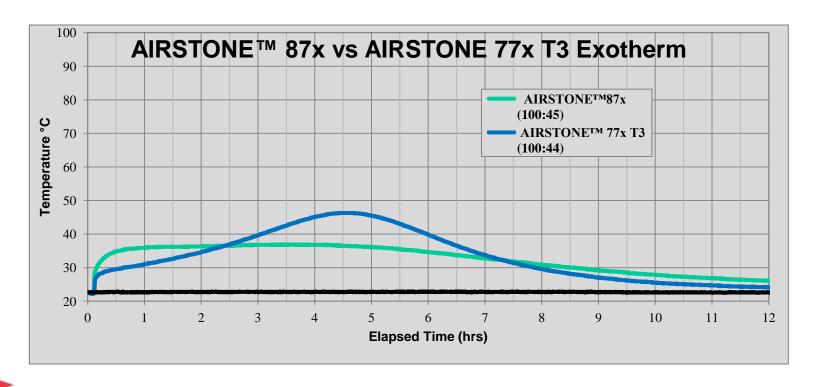

- Resinas epoxi : primer e gelcoat
- Sistema PU : acabamento

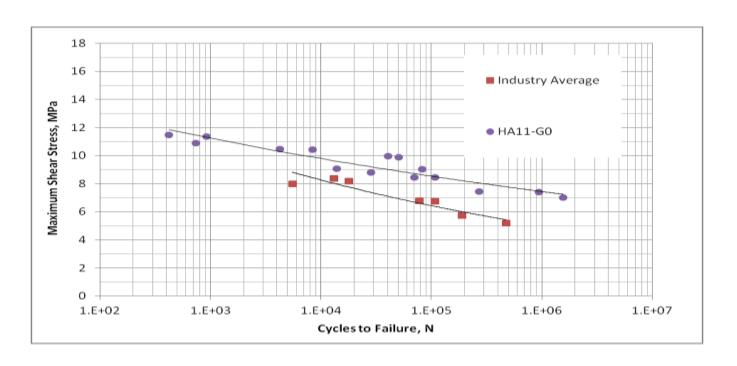
ELEMENTO DE NÚCLEO:

- Madeira Balsa
- PVC
 - ✓ Compaxx[™]

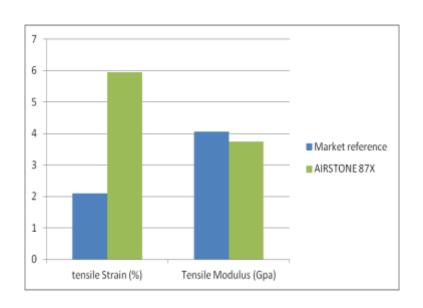


- É um sistema epóxi-amina, tenacificado e livre de vidro
- Foi desenhado para ter uma excelente processabilidade e para melhorar a resistência à fadiga
- Especialmente adequado para a produção de pás mais longas e leves

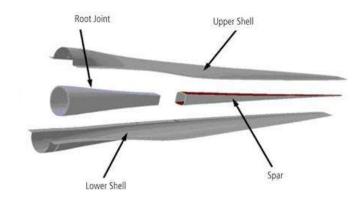

Apresentando uma velocidade de desenvolvimento de Tg mais alta, o sistema de infusão AirstoneTM 88x permite controlar da exoterma de reação num amplo intervalo de reatividade.

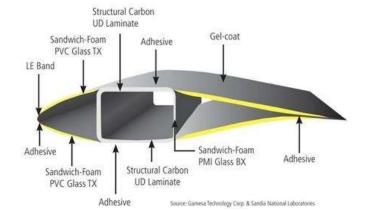

Tg Build up @ 70 °C de temperatura de cura

Apresentando uma velocidade de desenvolvimento de Tg mais alta,o sistema de infusão Airstone TM 88x permite controlar **da exoterma de reação** num amplo intervalo de reatividade.



AIRSTONE proporciona um **aumento de 50%** na resistência à fadiga versus a média da indústria.


O sistema de adesivo AIRSTONE™ 87x proporciona um **aumento de 300**% em elongação **sem perda no modulo de elongação**.



	AIRSTON	STONE™ 87x		
Modulus Mpa	3752	±	158	
Tensile Strength at	65.7		0.74	
Yield/Peak Mpa	65.7	±	0.74	
Ultimate Tensile	65 12 + 13		1.37	
Strength (Break) Mpa	65.12 ± 1.		1.57	
Elongation at Peak %	4.58	±	0.18	
Elongation at Break %	5.95	±	1.71	

Sistemas Dow para o mercado de pás eólicas

CASCAS:

- Material composto epoxi /fibra de vidro
 - ✓ Linha Airstone TM 78x
 - ✓ Linha Airtone TM 760x

SPAR, ROOT JOINT:

- Material composto epoxi / fibra de vidro
 - ✓ Linha AirstoneTM 78x
 - ✓ Linha AirstoneTM 73x

ADESIVO:

- Sistema epoxi
 - ✓ Linha Airstone TM 77x

SISTEMA DE PINTURA:

- Resinas epoxi : primer e gelcoat
- Sistema PU : acabamento

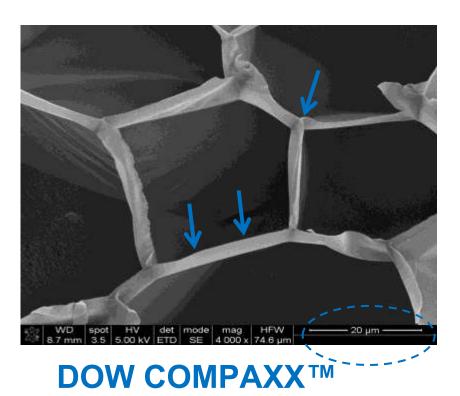
ELEMENT

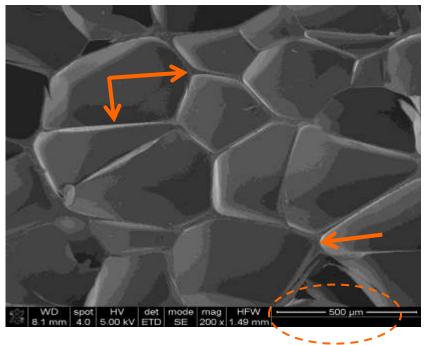
M

Novo Sistema

PVC Compaxx TM 900

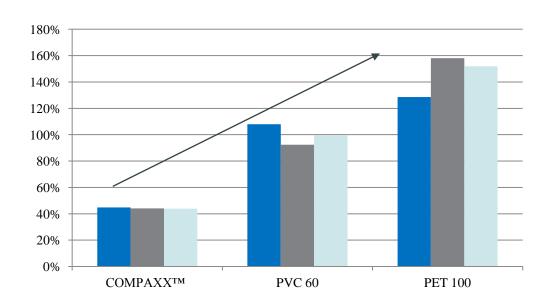
DOW COMPAXXTM - ESPUMA DE NUCLEO DESENHADA ESPECIFICAMENTE PARA APLICAÇÕES EM PÁS EÓLICAS.

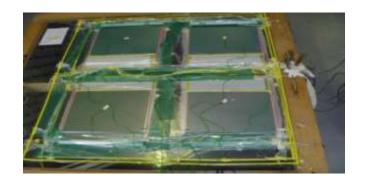

Um nova linha de materiais de núcleo, resultado do expertise da Dow em química e ciencia dos materiais e desenhada para ajudar a extender a vida útil das pás eólicas, atraves da criação de um sanduíche de material composto de alto desempenho


Compaxx tem algumas caracteristicas únicas tais como:

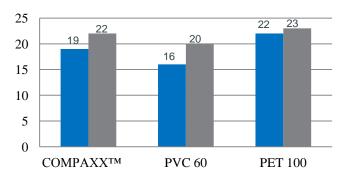
- ✓ Alta resistência mecânica
- √ Peso reduzido
- ✓ Desempenho de longo prazo
- ✓ Alta reistência a água e vapor
- √ Fabricação e processo

Estrutura do COMPAXXTM: distribuição de massa na espuma

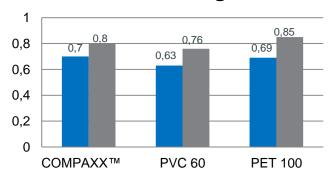



PVC Foam

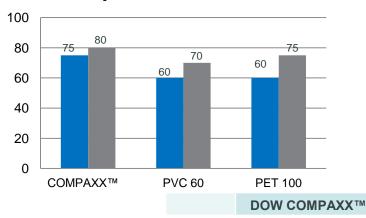
Comparação de absorção de resina



DOW COMPAXX™: 250 g/m² PVC 60 kg/m³ : **550 g/m²**

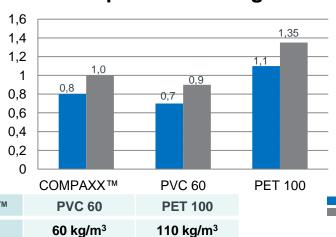


Shear Modulus



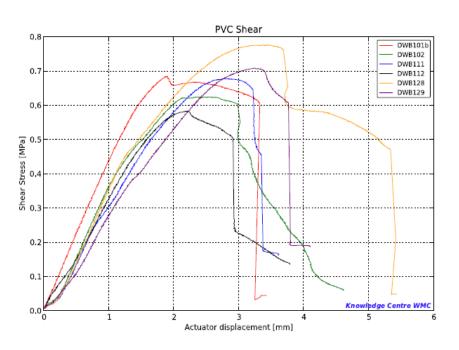
Shear Strength

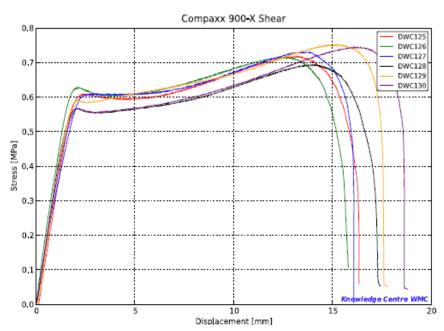
Germanischer Lloyd certificate
Typical –ISO 1922


Compression Modulus

Density

60 kg/m³


Compressive strength



Comparação do desempenho de cisalhamento

Ruptura ocorre logo após yield Variabilidade significativa entre amostras Região plástica extendida Resposta muito consistente

Obrigada

Cristina L. Alziati

clalziati@dow.com

Tel.: (11) 5188.9198

Cel.: (11) 99986.0401

conheça mais sobre nossas soluções: dowbrasil.com

visite também nossas páginas nas mídias sociais!

Back-up

Plataforma de Materiales Compuestos de Dow

Fuerte approach interdisciplinario

- Química
- Ciência de Materiais/Modelagem
- Know-how de formulaciones
- Tecnologia de Producción

Dualidade de oferta

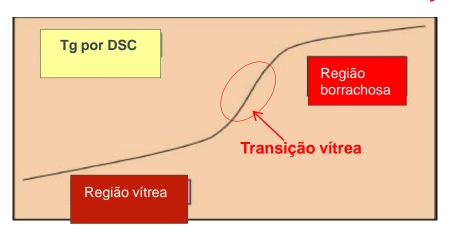
- Oferta de componientes
- Oferta de sistemas formulados

Dualidade de química

- Epoxica
- Poliuretana

Key Enablers

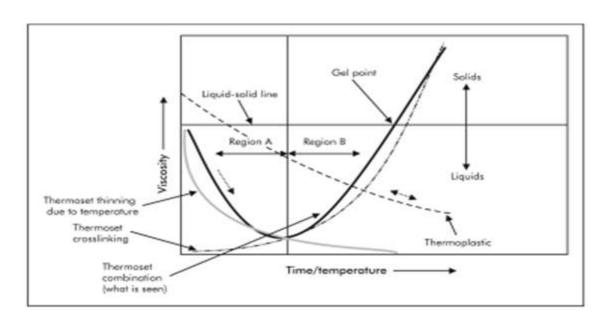
- Toughened epoxies
- Dow™ e-Cure modeling suite



Matriz: deve proteger a fibra das condições ambientais

	<u> </u>
AGENTE EXTERNO	POSSIVEL EFEITO SOBRE A MATRIZ
Calor	Polimeros termofixos amolecemcom a temperatura, mas não fundem e suas propreidades
	mecânicas começam a ser alteradas. Temperaturas extremas causam a degradação destes polimeros
Solventes	A interação dos polímeros com solventes depende da natureza química da matriz e de sua "semelhança" em termos de polaridade com o solvente
Gases	Alguns gases podem podem atacar quimicamente os polímeros. O caso mais comum é o do O2 que causa degradação por oxidação o que reduz significativamente as propriedades da matiz. O uso de antioxidantes ameniza esta ação. Os gases podem causar danos também por permeabilidade ou seja penetrando de forma física no polímero. A permeabilidade diminui com o aumento do crosslinking.
Fogo	A resistência ao fogo depende de vários fatores entre os quais a própria natureza química do polímero. A retardancia a chama pode ser aumentada adicionando produtos tais como alumina, materiais contendo halogenios, fósforo, etc
Eletricidade	A maioria dos polímeros tem alta resistência, alta constante dielética a baixa condutividade. Todos são melhores que os metais. Em aplicações nas quais o material composto precisa ter condutividade elétrica, metais em pó podem ser adicionados
Luz	A luz UV degrada os polímeros em maior ou menor grau dependendo da sua natureza química. Inibidores de UV tendem amelhorar a etabilidade a UV.

A matriz também define as transições térmicas do material composto


Temperatura de transição vítrea (Tg): temperatura na qual um polimero termofixo passa de um estado vítreo para um estado mais flexivel e amorfo. Esta transformação é reversível

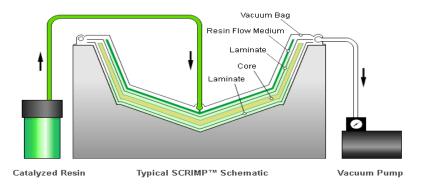
- Acima da Tg as propriedades mecanicas rigidez, compressão, cisalhamento, etc bem como resistência a água e estabilidade da cor sofrem um decrescimo significativo
- Portanto, quando um material composto é "desenhado" para uma aplicação estrutural é importante assegurar-se que a Tg deste material seja superior à temperatura de trabalho da peça.

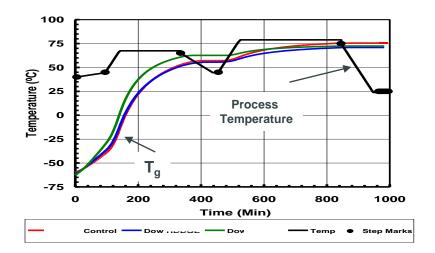
Uma função critica da matriz é molhar e unir as fibras e formar uma fase contínua que interconecta todas as partes do material composto.

A matriz não alcançará suas propriedades se as fibras não forem totalmente envolvidas pelo polimero. A tranferencia de carga entre fibras é interrompida se houver a presença de fibras secas.

A **viscosidade** da resina é o fator que mais influencia o processo de molhar as fibras

Viscosidade muito alta




Baixa penetração nos feixes de fibras

Aplicación de Dow ™ e-CURE para pás eólicas

- Una estuctura laminar de espuma de PVC y fibras de vidrio impregnada con resina epoxica (atraves del proceso SCRIMP) es usada.
- La resina fluje el la dirección X-Y atraves de la membrana de flujo y en al dirección Z atraves de la capas de manta de fibra, espuma y manta de fibra.
- Se en la dirección Z la permeabilidade es lenta, el incremento de viscosidad puede llevar a una mala impregnación.

- DOW TM eCURE permite refinar la formualción en terminos de perfil de viscosidad y T_g (la baja T_g de la espuma limita la temperatura maxima de la exoterma)
- DOW TM eCURE puede por lo tanto ser usada para reduzir el tiempo de ciclo.

Sistemas de infusão | Propriedades

Propriedades típicas dos componentes do sistema

Property ⁽¹⁾	AIRSTONE Epoxy Resin	AIRSTONE Hardeners				
	780E	782H	783H	784H	785H	786H
Viscosity @ 25°C (mPa•s) ASTM D-445	1400	68	27	16	13	11
Density @ 25°C (g/cc) ASTM D-4052	1.151	0.991	0.963	0.949	0.942	0.937
Shelf Life (Months)(2)	24	24	24	24	24	24

⁽¹⁾ These are typical values and should not be construed as specifications.

Proporção de mistura dos componentes

AIRSTONE™ 780E Epoxy Resin	AIRSTONE™ Hardeners 782H, 783H, 784H, 785H, 786H
100	31
100	37
	Epoxy Resin

⁽²⁾ See Packaging, Storage and Shelf Life section for details.

■ DOW COMPAXX™ | PRODUCT LINE

DOW COMPAXX™700 foam core system Used in wind blades up to 40m in length

DOW COMPAXX™900 foam core system Used in wind blades exceeding 40m in length

