NOVEL POLYURETHANE COATINGS OBTAINED WITH POLYCARBONATE DIOL FOR PIPELINES WITH IMPROVED MECHANICAL PROPERTIES AND HYDROLYSIS RESISTANCE

Dr. Víctor Costa, Dr. Manuel Colera
UBE Chemical Europe, S.A. (Spain)

MSc. Ing. José A. Jofre-Reche, Prof. Dr. José Miguel Martín-Martínez
University of Alicante (Spain)
- Introduction
- Experimental
- Results and discussion
- Conclusions
INTRODUCTION

- Introduction
- Experimental
- Results and discussion
- Conclusions
Internal polyurethane coatings of pipelines for improving abrasion resistance

Current coating: Polyether-based polyurethane
Polyurethane coatings improved the wear resistance of pipelines under erosion conditions.

Fillers and additives have been used to improve abrasion resistance of polyether and polyester-based polyurethane coatings

Current drawbacks and limitations of PU’s as pipeline coatings

- Limited hydrolytic stability and chemical resistance
- Additives for abrasion improvement are expensive
- High costs of maintenance
Improved ageing resistance and adhesion have been shown in polycarbonate diol-based polyurethanes with respect to polyether and polyester-based polyurethanes.

Terminal – Backbone – Bridge – Backbone – Terminal

Polycarbonate diol: higher stability due to lower chemical reactivity

Polyester diol: poor hydrolysis resistance

Polyether diol: low radical oxidation stability

Advantages of polycarbonate diol: Carbonate vs. ester & ether as bridge

- Excellent hydrolytic stability
- High chemical resistance
- Improved durability
- High thermal stability
- Good properties at low temperature
- High mechanical properties
Automotive finishing

Artificial leather

Leather finishing

Automotive finishing

Flooring

Wood coating & paints
Adhesives

Bioadhesives

TPU & elastomers

Rollers

Footwear

RIM foams
Inks

Oil & mining

Encapsulation

Pavements

Waterproof membranes

Any other application requesting improved durability...
Advantages of polycarbonate diols for pipelines:

- Excellent hydrolytic stability
- High chemical resistance
- Good durability
- High thermal stability
- Good properties at low temperature
- High mechanical properties
Objectives
- Improve the mechanical properties and abrasion resistance
- Improve the durability of internal PU coatings for pipelines by using polycarbonate diol in their synthesis
Introduction

Experimental

Results and discussion

Conclusions
Introduction

Experimental

Results and discussion

Conclusions
SYNTHESIS OF PU’s

Polyurethane coatings obtained by «one shot» process:

Polyether diol + polycarbonate diol

Polymeric MDI

1,4-butanediol

Polyurethane
RAW MATERIALS

Polyols

- Polyether: Polytetramethyleneglycol (PTMG)
- Polycarbonate diol: ETERNACOLL® PH50

PTMG
Sigma Aldrich Ltd.
(St. Paul, MN, USA)
$M_w = 1000$ Da

ETERNACOLL® PH50
UBE Chemical Europe S.A.
(Castellón, Spain)
$M_w = 500$ Da
RAW MATERIALS

- Isocyanate: Polymeric MDI (pMDI)
- Chain extender: 1,4-butanediol

SUPRASEC® 2416
Huntsman International LLC
(Woodlands, TX, USA)

1,4-butanediol
Sigma Aldrich Ltd.
(St. Paul, MN, USA)
EXPERIMENTAL TECHNIQUES

→ Wear resistance: ASTM D4060

Rotational abrameter Taber 5135
Taber Industries
(North Tonawanda, NY, USA)
EXPERIMENTAL TECHNIQUES

Optical microscopy

Laborlux 12 ME ST
Leica Microsystems GmbH
(Wetzlar, Germany)
EXPERIMENTAL TECHNIQUES

Durotech BS550 – Pin Load Instron (ASTM D2240)
Hampden Test Equipment Ltd.
(Northampton, UK)
EXPERIMENTAL TECHNIQUES

Mechanical properties

Universal Testing Machine Instron 4411
Instron Corp.
(Norwood, MA, USA)
EXPERIMENTAL TECHNIQUES

→ Mechanical properties

STRESS - STRAIN

ISO 37-2:2005

TEAR STRENGTH

ISO 34-1:2004
EXPERIMENTAL TECHNIQUES

- Hydrolysis resistance: ASTM D471

Soaking specimens of polyurethanes in water at 70°C for 500 hours
METHODOLOGY

Use of experimental design approach to study different variables simultaneously

Variables to study:

- Weight content of polycarbonate diol in the polyol mixture of polyether + polycarbonate diol
- NCO/OH ratio
METHODOLOGY

Doehlert plan

![Graph depicting NCO/OH weight percentage vs. polycarbonate diol weight percentage. The graph shows data points for various concentrations of polycarbonate diol, with corresponding NCO/OH ratios.]
• Introduction
• Experimental
• Results and discussion
• Conclusions
<table>
<thead>
<tr>
<th>Formulation</th>
<th>Pot life (min)</th>
<th>Viscosity (mPa·s)</th>
<th>Abrasion resistance (mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>10-16</td>
<td>< 2000</td>
<td>< 50 mm</td>
</tr>
<tr>
<td>Polycarbonate diol-free blank</td>
<td>on spec</td>
<td>on spec</td>
<td>34</td>
</tr>
<tr>
<td>PH50-including optimization</td>
<td>13.5</td>
<td>870</td>
<td>4</td>
</tr>
</tbody>
</table>

- With the optimized formulation containing polycarbonate diol as polyol (polyol blend: PH50 60% - PTMG 40%)
 a. Pot life: Pot life of the castable PU mixture is on specification, meeting similar curing times than those polycarbonate diol-free formulations
 b. Viscosity: As above, comparable viscosities are reached when including polycarbonate diol as polyol
 c. Abrasion resistance: PH50 increases the abrasion resistance of final polyurethane
NCO/OH vs polycarbonate diol (wt%)

HARDNESS

OPTIMAL REGION
Abrasion resistance (mg) vs. PH50 (wt%). PH50 > 50wt% indicates an optimal region.
Before abrasion

100wt% PTMG

50wt% PTMG + 50wt% polycarbonate diol

100wt% polycarbonate diol

After abrasion

500 μm

500 μm

500 μm
Before ageing

100 wt% PTMG

60 wt% PH50 + 40 wt% PTMG

After ageing
PU – 60wt% PH50+ 40wt% PTMG

PU – 100wt% PTMG

Stress σ (MPa)

Strain ε (%)
Tear strength (kN/m)

100wt% PTMG 60wt% PCD + 40wt% PTMG

Polyurethane composition
PU – 60wt% PH50+ 40wt% PTMG (before ageing)

PU – 60wt% PH50+ 40wt% PTMG (after ageing)

PU – 100wt% PTMG (before ageing)

PU – 100wt% PTMG (after ageing)
Variation (%)

<table>
<thead>
<tr>
<th>Property</th>
<th>100wt% PTMG</th>
<th>60wt% PH50 + 40wt% PTMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic modulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation at break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toughness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Red: 100wt% PTMG
- Blue: 60wt% PH50 + 40wt% PTMG
<table>
<thead>
<tr>
<th>Polyurethane composition</th>
<th>Before ageing</th>
<th>After ageing</th>
</tr>
</thead>
<tbody>
<tr>
<td>100wt% PTMG</td>
<td>-57%</td>
<td>-43%</td>
</tr>
<tr>
<td>60wt% PCD + 40wt% PTMG</td>
<td>-43%</td>
<td>-43%</td>
</tr>
</tbody>
</table>
Introduction

Experimenta

Results and discussion

Conclusions
- Addition of polycarbonate diol produced a huge improvement in the mechanical properties of polyurethanes.

- PU coating losses by abrasion can be minimized by using polycarbonate diol content higher than 50 wt% in the polyol.

- PU coatings containing polycarbonate diol showed high hydrolytic stability and less losses of properties after hydrolytic degradation.
Muito Obrigado !!!

Deseja melhorar a performance dos Poliuretanos em sua aplicação?
Deseja maiores informações sobre Eternacoll® Polycarbonate diols?

✓ Visite nossa webpage www.ube.es
✓ Envie um e-mail a d.Hernandes@ube.ind.br
✓ Fale com Daniel Hernandes – 11 9 6640 6053